力法对称结构
- 格式:ppt
- 大小:1010.50 KB
- 文档页数:17
结构力学学习心得体会浅谈对称性在结构力学中的应用 摘要:在工程实际问题中,有很多结构都具有对称性。
我们对这些结构进行受力分析的时候,常常将结构简化为杆系模型,而结构力学研究的就是结构的杆系模型,因此对称性在结构力学中有着广泛的应用。
特别是在求解超静定结构问题中,无论力法还是位移法,都是繁杂的.但对于对称结构,利用结构的对称性,可使结构内力计算大为简化.现在本文章就对称性在结构力学中的应用做一简单的总结。
关键词:结构力学;对称性;内力;变形1.引言所谓对称结构是指几何形状和支承对某一对称轴对称.且杆件截面和材料性质也对此轴对称。
利用结构的对称性可使计算得到简化,这是因为对称结构具有如下特点:在正对称荷载作用下,内力和变形是正对称的;在反对称荷载作用下,内力和变形是反对称的,如下图所示:2.对称性在求解结构内力中的应用对称结构在正对称荷载作用下,其对称的内力(弯矩和轴力)和位移是正对称的,其反对称的内力(剪力)是反对称的;在反对称荷载作用下,其对称的内力(弯矩和轴力)和位移是反对称的,其反对称的内力(剪力)是正对称的。
因此,只要我们做出半边结构的内力图,也就知道了整个结构的内力图。
据此,我们在对对称结构进行内力分析时,就可以取半边结正 对 称 反 对 称构进行分析。
取半边结构进行分析,可以减少超静定次数,减少基本未知量,为解题提供了很大的方便。
在用力法解决超静定问题时,对于对称的结构,可利用对称性简化计算。
简化步骤如下:①选取对称的基本结构。
②将未知力及荷载分组。
③取半结构进行计算。
对于对称结构承受一般非对称荷载时,利用荷载分组,将荷载分解为正、反对称的两组,并将他们分别作用于结构上求解内力,然后将计算结果叠加。
在计算对称结构时,根据对称结构特性,可以选取半个结构计算。
选取半结构的原则:(1)在对称轴的截面或位于对称轴的节点处(2)按原结构的静力和位移条件设置相应的支撑,使半结构与原结构的内力和变形完全等效.奇数跨对称结构:偶数跨对称结构:例如下图(a)所示,此二层刚架为对称结构承受对称荷载,沿对称轴断开,取半结构如图(b)所示.原六个位移基本未知量转为两个基本未知量、并注意半结构粱抗弯刚度相应增大为原二倍即建立结点A、C力矩平衡方程,可解出,M 图如图(c)所示。
结构力学——力法对称性的利用力法对称性是结构力学中常用的一种方法,可以有效简化结构分析的复杂性。
它基于结构的几何和物理特性,通过利用结构的对称性来减少需要考虑的自由度,从而简化结构力学问题。
力法对称性的利用可以在两个方面发挥作用:减少计算自由度和简化载荷分析。
首先,力法对称性可以减少计算自由度。
结构力学问题的求解通常需要计算结构的内力和变形。
结构的自由度越多,计算所需的计算量就越大,求解也就越复杂。
通过利用结构的对称性,我们可以将结构分为若干对称部分,仅对其中一个部分进行力学分析,然后通过对称性来得到其他部分的结果。
这样可以大大减少计算自由度,简化结构力学问题的求解过程。
具体来说,力法对称性可以应用于不同的结构部分,如杆件、板和壳体等。
例如,在杆件问题中,结构的对称性可以体现为几何对称性,如轴对称、平面对称等。
通过建立合适的坐标系和选择适当的参考点,可以简化结构的力学分析。
力法对称性还可以应用于简化载荷分析。
结构在受力时,通常存在很多不同的载荷情况,如重力、集中力、分布力等。
利用力法对称性可以简化对这些载荷的分析。
通过找到适当的对称轴或对称面,可以使得一些载荷分布具有对称性,从而简化分析。
通过减少载荷分布的复杂程度,可以更方便地计算结构的内力和变形。
需要注意的是,力法对称性在实际应用中需要满足一定的条件。
首先,结构必须存在对称性,即具有一定的几何和物理特性。
其次,结构的对称性必须与载荷情况相匹配。
如果对称性不满足这些条件,力法对称性可能无法有效地简化结构力学问题。
总之,力法对称性在结构力学中的应用可以大大简化力学分析的困难。
通过减少计算自由度和简化载荷分析,可以提高结构力学问题的求解效率。
利用力法对称性,结构工程师可以更加方便地进行结构设计和分析,提高工作效率和设计质量。
结构力学第20次课 力法6-5 位移法7-6结构的对称性 foxscarlet12012-5-17 《结构力学》第20次课 第6章力法6-5P225与第7章位移法7-6P302内容6-5 7-6 对称性利用1 对称性(1)结构的对称性:对称结构是指几何形状、支座情况、刚度都关于某轴对称。
(2)荷载的对称性: 对称荷载 反对称荷载 任何荷载都可以分解成对称荷载+反对称荷载两部分。
2 取对称的基本体系计算: 不论在何种外因作用下,对称结构应考虑采用对称的基本体系计算。
沿对称轴将梁切开,三对多余未知力中,弯矩X 1和轴力X 2是 未知力,剪力X 3是 未知力。
对称未知力产生的单位弯矩图和变形图是对称的;反对称未知力产生的单位弯矩图和变形图是反对称的。
如果荷载对称,M P 对称,Δ3P =0,X 3=0, 未知力为零;如果荷载反对称,M P 反对称,Δ1P =0, Δ2P =0, X 1= X 2 =0, 未知力为零。
3 取等代结构计算对称结构的变形特点,针对切开对称轴处是刚结点。
注意,如果对称轴上是铰结点有所不同。
(1)对称结构在对称荷载作用下位于对称轴上的截面,水平位移和转角为零,只有竖向位移。
(2)对称结构在反对称荷载作用下位于对称轴上的截面,竖向位移为零,水平位移和转角不为零。
① 奇数跨(无中柱)对称结构在对称荷载作用下的等代结构 §7-6 对称结构的计算奇数跨刚架受对称荷载A. 奇数跨结构(无中柱对称结构)F PF P(1) 对称荷载F P半边结构对称轴截面内力结构与荷载3 取等代结构计算1扩展练习 奇数跨结构受对称荷载作用llqllAB例2. 图示结构EI = 常数。
对称性只有竖向荷载作用1X 3=3X 2X 1X 2=【例题】利用对称性计算图示结构,绘制弯矩图。
(EI=常l↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓ql/2l/2l/2l/2(a )ldbFPFP4 无弯矩状态判定对称结构正对称荷载。
第6章力法6.1 复习笔记一、超静定次数的确定——力法的前期工作1.超静定结构的静力平衡特征和几何构造特征(1)静力平衡特征一个结构,如果它的支座反力和各截面的内力不能完全由静力平衡条件唯一地加以确定,就称为超静定结构。
(2)几何构造特征超静定结构是有多余约束的几何不变体系。
2.超静定次数的确定(1)从几何构造看,超静定次数=多余约束的个数。
(2)从静力分析看,超静定次数=未知力个数-平衡方程的个数。
(3)求超静定次数时,应注意以下事项:①撤去一根支杆或切断一根链杆,等于拆掉一个约束;②撤去一个铰支座或撤去一个单铰,等于拆掉两个约束;③撤去一个固定端或切断一个梁式杆,等于拆掉三个约束;④在连续杆中加入一个单铰,等于拆掉一个约束;⑤不要把必要约束拆掉;⑥要把全部多余约束都拆除。
二、力法的基本概念1.力法的基本未知量、基本体系和基本方程 (1)力法的基本未知量把多余未知力的计算问题当作超静定问题的关键问题,把多余未知力当作处于关键地位的未知力——称为力法的基本未知量。
(2)力法的基本体系和基本结构①含有多余未知力的静定结构,称为力法的“基本体系”; ②去掉多余约束力和荷载后的静定结构,称为力法的“基本结构”。
(3)力法的基本方程11δ——基本结构在单位未知力单独作用下沿1X 方向的位移;1X ——未知力;1P ∆——基本结构在荷载单独作用下沿1X 方向的位移。
2.多次超静定结构的计算 (1)二次超静定结构①图6-1-1(a )为二次超静定结构,取B 点两个支杆为多余约束,用X 1、X 2作为基本未知量代替,则基本体系如图6-1-1(b )所示。
图6-1-1②二次超静定结构的力法基本方程(2)多次超静定——力法典型方程——由荷载产生的沿方向的位移;——由单位力产生的沿方向的位移,常称为柔度系数。
在得到多余未知力的数值之后,超静定结构的内力可根据平衡条件求出,或者根据叠加原理用下式计算三、力法解超静定刚架和排架1.刚架的解法步骤(1)选取基本体系;(2)列出力法方程;(3)求系数和自由项;(4)求多余未知力;(5)作内力图。