正态总体及二项分布百分数的假设检验
- 格式:docx
- 大小:90.89 KB
- 文档页数:5
数理统计17:正态总体参数假设检验现在,我们对正态分布的参数假设检验进⾏讨论,这也是本系列的最后⼀部分内容。
由于本系列为我独⾃完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢!⽬录Part 1:基本步骤正态总体N (µ,σ2)参数的假设检验不外乎遵循以下的步骤:找到合适的统计量,⽤统计量的取值范围设计拒绝域。
假定原假设为真,考虑这个条件下统计量的分布。
根据统计量的分布,根据检验的⽔平要求设置拒绝域的边界值。
设计检验的核⼼在于假定原假设为真,这是因为检验的⽔平是基于弃真概率定义的,也就是说,要在第三步中写出检验的⽔平,就必须在H 0成⽴的情况下找出⼩概率事件的发⽣条件。
⽐如,对于均值的检验⼀共有三种:1.H 0:µ=µ0↔H 1:µ≠µ0;2.H 0:µ≥µ0↔H 1:µ<µ0;3.H 0:µ≤µ0↔H 1:µ>µ0.每⼀种⼜可以细分为⽅差σ2已知和⽅差σ2未知两种情况,但显然不论⽅差是否已知,最核⼼的统计量都应该是¯X,如果⽅差未知可能还要⽤到⽅差的替代:S 2。
以下,对于这三种问题,拒绝域分别应该是这样的:如果H 0被接受,则¯X 既不应该太⼤,也不应该太⼩,拒绝域的基础形式应该是{¯X >c 1}∪{¯X <c 2}.如果H 0被接受,则¯X 不应该太⼩,⽆论多⼤都可以,拒绝域的基础形式应该是{¯X <c }.如果H 0被接受,则¯X 不应该太⼤,⽆论多⼩都可以,拒绝域的基础形式应该是{¯X>c }.当然,这只是拒绝域的基础形式,实际情况下可能不⽌使⽤¯X,但基本思想应该是这样的。
对于⽅差的检验,则将检验统计量换成了S 2,或者均值已知情况下的离差平⽅和Q 2,步骤也和上⾯的差不多。
正态分布假设检验一、概述正态分布假设检验是统计学中常用的一种方法,用于判断一个数据集是否符合正态分布。
正态分布是指在统计学中,当数据集的频率分布呈钟形曲线时,称其为正态分布。
正态分布在实际应用中非常广泛,因为许多自然现象都遵循这种分布规律。
对于一个数据集而言,如果它符合正态分布,则可以使用一系列的统计方法进行进一步的研究和分析。
二、检验方法1. 假设检验假设检验是指通过样本数据来推断总体参数的方法。
在正态分布假设检验中,我们需要对总体均值和标准差进行假设检验。
具体而言,我们需要提出原假设和备择假设两个假设:原假设:样本数据符合正态分布;备择假设:样本数据不符合正态分布。
在进行实际计算时,我们需要根据样本数据来计算出样本均值和标准差,并使用这些数据来推断总体均值和标准差是否符合正态分布。
2. 正态概率图正态概率图是判断一个数据集是否符合正态分布的常用方法之一。
它通过将数据集的分位数与正态分布的分位数进行比较,来判断数据集是否符合正态分布。
具体而言,正态概率图将数据集的每个值按照从小到大的顺序排列,并计算出每个值对应的标准化值(即该值与样本均值之间的差除以样本标准差)。
然后,将这些标准化值按照从小到大的顺序排列,并绘制在图表上。
如果数据集符合正态分布,则这些标准化值应当近似于一个直线。
3. 偏度和峰度检验偏度和峰度是用来描述一个数据集形态特征的指标。
在正态分布中,偏度为0,峰度为3。
因此,在进行正态分布假设检验时,我们可以通过计算样本偏度和峰度来判断样本是否符合正态分布。
具体而言,如果样本偏度和峰度与正态分布相差不大,则可以认为样本符合正态分布。
三、实例演示以下是一个实例演示,在Python中使用scipy库进行正态分布假设检验:```pythonimport numpy as npfrom scipy import stats# 生成100个随机数data = np.random.normal(0, 1, 100)# 进行正态性检验k2, p = stats.normaltest(data)alpha = 0.05# 输出检验结果print("p = {}".format(p))if p < alpha:print("数据不符合正态分布")else:print("数据符合正态分布")```在上述代码中,我们首先生成了一个包含100个随机数的数据集。
第七章假设检验有了概率和概率分布的知识,接下来我们要逐步掌握统计检验的一般步骤。
既然按照数学规则得到的概率都不能用经验方法准确求得,于是,理论概率和经验得到的频率之间肯定存在某种差别,这就引出了实践检验理论的问题。
第一节二项分布二项分布是从著名的贝努里试验中推导而来。
所谓贝努里试验,是指只有两种可能结果的随机试验。
每当情况如同贝努里试验,是在相同的条件下重复n次,考虑的是“成功” 的概率,且各次试验相互独立,就可利用与二项分布有关的统计检验。
虽然许多分布较之二项分布更实用,但二项分布简单明了,况且其他概率分布的使用和计算逻辑与之相同。
所以要理解统计检验以及它所涉及的许多新概念,人们几乎都乐意从二项分布的讨论入手。
1.二项分布的数学形式二项试验中随机变量X的概率分布,即P(X=X) = C x p x q n-x on(7. 3)2.二项分布的讨论(1)二项分布为离散型随机变量的分布。
(2)二项分布的图形当p = 0. 5时是对称的,当p W 0. 5时是非对称的,而当n愈大时非对称性愈不明显。
(3)二项分布的数学期望E(X)=〃 = np,变异数D(X) = O2= npq。
(4)二项分布受成功事件概率p和试验次数n两个参数变化的影响,只要确定了p和n, 成功次数x的概率分布也随之确定。
因而,二项分布还可简写作B(x;n, p)。
(5)二项分布的概率值除了根据公式直接进行计算外,还可查表求得。
第二节统计检验的基本步骤概率分布不是一种研究者从资料中看到的分布,我们讨论它,不是出于对数学的爱好,而是因为统计推论的有关工作需要它。
所有的统计检验都包含某些特定的步骤:(1)建立假设;(2)求抽样分布(所谓抽样分布,就是把具体概率数值赋予样本每个或每组结果的概率分布);(3)选择显著性水平和否定域;(4)计算检验统计量;(5)判定。
1.建立假设统计检验是将抽样结果和抽样分布相对照而作出判断的工作。
取得抽样结果,依据描述性统计的方法就足够了。
1正态总体参数的假设检验 1.1单个正态总体参数的假设检验 1.1.1单个正态总体均值的假设检验(1)已知方差20σ或已知样本为大样本时,对均值μ的检验。
样本为正态总体中抽取,方差已知;样本从正态总体中抽取,方差未知,但样本容量大于30。
1) 提出假设H 0,H A ; 2) 统计量u 计算: u =x−μ0σ/√n或u =x−μ0S/√n;H 0成立时,u ~N(0,1)3) 依据所给显著水平α,确定临界值u 0.5α或u α; 4) 比较所得统计量u 与临界值,判断H 0或H A 成立。
Excel 中用NORMSINV()返回u α,双尾检验中该函数中所用概率应为1-0.5α,单尾检验所用概率为1-α。
(2)方差20σ未知且已知样本为小样本时对均值μ的假设检验。
1)提出假设H 0,H A ; 2)统计量t 计算: t =x−μ0S/√nH 0成立时,t ~t(n-1)3)依据所给显著水平α,确定临界值t 0.5α或t α; 4)比较所得统计量t 与临界值,判断H 0或H A 成立。
TINV()返回t α,给出的为双尾概率。
即显著水平为α,单尾检验时应使用双倍所给显著水平概率2α为参数。
metlab 中给出为单尾概率。
1.1.2单正态总体方差的假设检验 1)提出假设H 0,H A ;2)H 0成立前提下统计量计算: χ2=(n−1)S 2σ02~χ2(n −1)3)依据显著水平α及(n-1)的自由度,取得χ2的临界值;4)判断H 0或H A 成立:)1(05.0122-<<-n αχχ或)1(5.022->n αχχ时,拒绝H 0;)1(22->n αχχ时拒绝H 0;)1(122-<-n αχχ时拒绝H 0。
Excel 中用CHIINV()返回单尾概率,故双尾检验时概率应使用0.5α,另需使用自由度f 为第二参数。
χ2 1.2两个正态总体参数的假设检验 1.2.1两个正态总体均值差的假设检验(1)已知两样本方差条件下,假设检验H 0:μ1=μ2),(~2221212121n n N x x σσμμ+-- 1)提出假设; 2)计算统计量:)1,0(~//)()(2221212121N n n x x u σσμμ+---=;3)依据显著水平得临界值; 4)判断。
概率论与数理统计第7章假设检验第3讲正态总体参数的假设检验(2)01 两个正态总体参数的假设检验02单侧检验03 p 值检验法—简介本讲内容*21μμ-2221σσ检验目的本节将讨论两个相互独立的正态总体,211(,)X N μσ222(,)Y N μσ的参数检验问题.设是来自总体X 的简单随机样本;112,,,n X X X 是来自总体Y 的简单随机样本;212,,,n Y Y Y 样本均值.X Y 、为两为两样本方差. 显著性水平为α .2212S S 、(3) μ1 , μ2 未知,检验.2222012112::H H σσσσ=≠,(1)σ12,σ22已知,检验.012112::H H μμμμ=≠,这些假设检验可细分为许多种情形,这里只介绍3种最常见的类型:(2)σ12,σ22未知但σ12 =σ22,检验.012112::H H μμμμ=≠,两个正态总体的参数检验,主要有比较两个均值μ1与μ2的大小,比较两个方差σ12与σ22的大小.根据已知条件的不同,由样本观测值求出统计量的观测值u ,然后作判断.确定拒绝域2{}U u α>选取检验统计量221212~(0,1)X YU N n n σσ-=+U 检验法建立假设012112::.H H μμμμ=≠,借鉴上一章区间估计(1) 已知,检验.12μμ-2212,σσ1212~(2)11w X Y T t n n S n n -=+-+122{(2)}T t n n α>+-(2) 未知但σ12 =σ22,检验.2212,σσ12μμ-T 检验法建立假设012112::.H H μμμμ=≠,由样本观测值求出统计量的观测值t ,然后作判断.确定拒绝域选取检验统计量211222~(1,1)S F F n n S =--2212121{(1,1)(1,1) 或}F F n n F F n n αα-<-->--2222012112::H H σσσσ=≠,(3) μ1 , μ2 未知,检验.2212/σσF 检验法建立假设由样本观测值求出统计量的观测值,然后作判断.确定拒绝域选取检验统计量在某种制造过程中需要比较两种钢板的强度,一种是冷轧钢板,另一种双面镀锌钢板。
正态分布的假设检验方法正态分布是一个重要的统计概念,经常用于解决各种实际问题。
不同于其它常见分布,正态分布具有非常特殊的性质,其中最突出的就是其反映了许多现实生活中的随机变量(例如人的身高、体重等)的分布类似于正态分布的情况。
随着科技与数据收集技术的不断进步,人们能够收集到越来越多的实际数据,并采用各种统计方法来分析这些数据。
在实际应用中,对于一些特定的问题,我们需要检验数据是否符合正态分布,并进而研究相关假设问题。
这需要运用到假设检验的方法,因此本文将对正态分布的假设检验方法进行详细阐述,包括其基础理论、假设设定方法、检验统计量的计算以及显著性检验的实现等。
一、基础理论正态分布是统计学中一个重要的概念,它是一个连续型概率分布,通常由两个参数μ和σ描述,其中μ是正态分布的均值,σ是正态分布的标准差。
对于一个正态分布的随机变量x ~N(μ,σ²),它的概率密度函数可以表示为:$$ f(x)=\frac{1}{\sigma\sqrt{2\pi}}\mathrme^{−(x−\mu)^2/2\sigma^2} $$在实际研究中,许多随机变量的分布都具有类似于正态分布的特性,在大样本情况下,它们的概率密度图常常能够像钟形曲线一样展示出来,因此我们可以通过正态分布模型,来描述某些随机变量的概率分布情况。
随着数据科学的不断进步,我们现在可以通过各种手段来收集数据,并利用统计工具对这些数据进行分析。
假设检验是其中一个最基础的分析方法,它通常用于判断某一假设是否成立。
正态分布的假设检验方法,就是一种基于正态分布模型的检验方法。
二、假设设定方法在进行正态分布的假设检验时,我们通常要设定两个假设,分别为原假设和备择假设。
原假设($H_0$)是我们想要检验的假设,而备择假设($H_1$)则是对原假设的拒绝。
在正态分布的假设检验中,常见的假设包括以下两种:1. 单样本均值检验对于单样本均值检验,我们设定以下的原假设和备择假设:$$ H_0:\mu=\mu_0 \ \ \ \ \ H_1:\mu\neq\mu_0 $$其中,$H_0$表示总体均值等于特定值$\mu_0$,$H_1$表示总体均值不等于$\mu_0$。
正态总体中参数的假设检验正态总体参数的假设检验是统计推断中的一种方法,用于判断总体参数是否符合我们的假设。
下面将详细介绍正态总体参数的假设检验原理和步骤。
一、假设检验原理正态总体参数的假设检验是通过收集样本数据,计算样本统计量来推断总体参数的方法,其中包括均值和标准差。
在进行正态总体参数的假设检验时,我们首先假设总体参数的值,并设立一个零假设和一个备择假设。
其中零假设(H0)是我们希望证伪的假设,备择假设(H1)是我们希望证明的假设。
然后,我们根据样本数据计算得到样本统计量,比如样本均值和样本标准差,并将其与假设中的总体参数进行比较。
通过计算假设检验统计量的值,我们可以判断是否拒绝零假设,即总体参数是否符合我们的假设。
二、假设检验步骤1.确定假设:我们首先需要确定我们要研究的总体参数是均值还是标准差,并设立零假设和备择假设。
通常情况下,零假设是总体参数等于一些特定值,备择假设可以是总体参数大于、小于或者不等于该特定值。
2.收集样本数据:我们需要从总体中取得一个样本,并记录相应的观测值。
3.计算样本统计量:根据样本数据,我们可以计算得到样本均值和样本标准差。
4.计算假设检验统计量:根据样本数据和零假设中的总体参数值,我们可以计算得到假设检验统计量的值,该值用于判断是否拒绝零假设。
5.设定显著性水平:我们需要设定一个显著性水平,通常为0.05或0.01、显著性水平表示拒绝零假设的程度,如果得到的结果小于显著性水平,则可以拒绝零假设。
6.判断拒绝或接受零假设:根据计算得到的假设检验统计量的值与临界值进行比较,如果假设检验统计量的值小于临界值,则拒绝零假设;如果假设检验统计量的值大于等于临界值,则接受零假设。
7.得出结论:根据拒绝或接受零假设的结果,我们可以得出总体参数是否符合我们的假设。
三、举例说明假设我们要研究厂生产的产品的重量是否符合标准,假设标准重量为500克。
我们收集了一个包含30个产品的样本,并计算得到样本的平均重量为495克,标准差为10克。