数据仓库和平台
- 格式:ppt
- 大小:995.00 KB
- 文档页数:41
数据中心 ODS随着企业信息化建设的发展,巨大的投资为企业建立了众多的信息系统,以帮助企业进行内外部业务的处理和管理工作。
随着信息系统的增加,各自孤立工作的信息系统将会造成大量的冗余数据和业务人员的重复劳动。
同时随着时间推移,各系统不断沉淀大量的历史数据。
如何打破信息孤岛,充分利用现有的历史数据,为企业提供战略决策的数据支持是各行各业所必需考虑的事情。
为支持企业各项业务的长远发展,不断提高管理水平,建立实现企业数据交换、数据集成的企业级数据中心,并在此基础上初步建设数据管控平台,有效实现数据质量管理,为后续数据线规划的报表管理以及EDW等系统建设奠定基础,为企业提升核心竞争力,优化资源配置、实施有效管控,提高服务水平、科学可待续发展和加速发展奠定良好的基础。
一、系统规划蓝图二、东南融通的优势1、关键技术优势数据交换、数据加工基于统一的调度监控ETLPLUS、调度引擎JSI模块封装SHELL、可执行程序、存储过程、Datastage作业等各种作业类型的执行接口?高扩展性设计,实现ETL、调度监控和硬件的集群报表工具(BI.OFFICE、其他)成熟组件支持,文件交换组件,数据加工组件2、团队优势BI线条员工超过1200人,覆盖咨询、解决方案、研发、实施各个层面参与众多的ODS/EDW/BI项目实施团队彼此配合程度高、统一协调、合作经验丰富随时进行同行信息共享与交流,及时进行方案提炼数据仓库 EDW现代商业银行面临着诸多挑战,包括金融改革日益深化的挑战、面临来自外资银行的竞争、银行国际化的发展需要、客户的要求越来越成熟、监管机构对银行的监管越来越严格。
面对这些挑战,要求金融企业对企业经营数据和信息进行充分的掌握和分析,以帮助企业精确掌握企业的经营状况和准确决策。
建立企业级的银行数据仓库是银行业整体信息资产的管理,建立信息资产的运营服务体系,提升信息资产的业务价值。
东南融通投入了大量资源研究银行企业级DW&BI应用体系,如下图所示:BI.Bank解决方案蓝图,包括以下关键内容:一、数据仓库战略规划参照国际银行领先DW&BI体系架构,规划银行企业级DW&BI的技术框架、数据模型、应用框架,结合银行的业务管理改革步伐制定整体实施计划,帮助银行循序渐进地逐步建成企业级DW&BI系统。
大数据分析知识:数据存储与管理——数据仓库、云计算和数据库随着技术的不断发展,越来越多的数据产生并蓄积,如何进行有效管理和利用已成为人们关注的焦点之一。
本文将从数据存储和管理的角度出发,分别介绍数据仓库、云计算和数据库的概念、特点及其在大数据领域的应用。
一、数据仓库数据仓库(Data Warehouse)是指从各个数据源中提取数据并经过处理后存储到一个统一且独立的数据集合中,以方便用户进行分析和决策的系统。
数据仓库通过将数据分析和查询分离,实现了数据决策支持系统的高效运行,从而提高数据的利用率。
数据仓库的特点:1.面向主题:数据仓库是面向主题的,即数据集中一般针对某个主体领域或数据分析任务。
例如,销售数据仓库、人力资源数据仓库等。
2.集成性:数据仓库具有集成性,可以将不同类型的数据源通过ETL(Extract-Transform-Load)的方式进行标准化、转换和加载,并保证数据之间的一致性和完整性。
3.时间性:数据仓库关注历史数据的存储和分析,并提供不同时间维度的数据展示方式,为决策者提供多样化的选择。
数据仓库在大数据领域的应用:1.数据分析和挖掘:通过数据仓库中的数据进行多维分析和数据挖掘,为决策者提供全面的数据支持。
2.企业级统一视图:数据仓库可以实现企业级统一视图,使决策者可以获得一份全面的数据报告。
3.交互式查询:数据仓库提供交互式的查询功能,用户可以根据需要自定义查询条件和维度,获得满足自己需求的数据结果。
二、云计算云计算(Cloud Computing)是指通过网络以服务方式提供计算资源的一种模式。
云计算基于分布式计算、虚拟化技术和自动化管理,通过网络实现数据处理和存储,通过服务模式进行资源使用和计费。
云计算的特点:1.弹性伸缩:云计算可以根据需求进行弹性伸缩,为企业和个人提供更加灵活的资源使用方式,从而降低IT成本、提高效率。
2.服务化:云计算基于服务的方式提供资源,用户可以根据需要选择提供商和服务类型,并根据实际使用量进行计费,降低了技术和资金门槛。
集合系统的名词解释随着科技的不断发展,各种集合系统在我们的日常生活中扮演着越来越重要的角色。
从社交媒体平台到电商网站,从智能家居到自动驾驶系统,无一不依赖于集合系统的设计和优化。
然而,在我们谈论这些系统时,很少有人能清晰地解释它们背后的核心概念。
因此,本文旨在对集合系统的一些重要名词进行解释,以帮助读者更好地理解和应用这些概念。
1. 数据库(Database)数据库是集合系统的核心组成部分之一。
它是指按一定的结构和规则组织起来的、用于存储和管理大量数据的集合。
数据库通常由一个或多个表组成,每个表由行和列组成,分别代表数据的记录和属性。
通过数据库,我们可以方便地存储、查询和更新大量数据,保证数据的一致性和完整性。
2. 数据仓库(Data Warehouse)数据仓库指的是一个用于存储大量历史数据的集中式仓库。
与传统的数据库不同,数据仓库旨在支持决策支持和分析工作,而不是日常的事务处理。
数据仓库通常采用异构的数据源,并经过清洗、集成和转换,以提供决策者所需的一致、准确的数据视图。
数据仓库的架构通常分为数据提取、数据转换、数据加载和数据查询等环节,以确保数据的完整性和可用性。
3. 数据挖掘(Data Mining)数据挖掘是一种通过在大规模数据集中发现模式和规律的技术。
它包括从数据中提取特征、进行统计分析、构建模型和预测未来趋势等过程。
数据挖掘可以帮助我们发现隐藏在庞杂数据背后的知识,为决策和预测提供支持。
常见的数据挖掘技术包括聚类、分类、关联规则挖掘和异常检测等。
4. 人工智能(Artificial Intelligence)人工智能是一种使机器能够像人类一样思考和行动的技术。
在集合系统中,人工智能常常用于处理和分析大量数据,以及实现自动化的决策和推荐。
其中,机器学习是人工智能的重要方法之一,它通过从数据中学习并建立模型,实现对未知数据的预测和分类。
5. 云计算(Cloud Computing)云计算是一种通过网络提供计算资源和服务的模式。
数据仓库基础知识1、什么是数据仓库?权威定义:数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。
1)数据仓库是用于支持决策、面向分析型数据处理;2)对多个异构的数据源有效集成,集成后按照主题进行重组,并包含历史数据,而且存放在数据仓库中的数据一般不再修改。
面对大数据的多样性,在存储和处理这些大数据时,我们就必须要知道两个重要的技术。
分别是:数据仓库技术、Hadoop。
当数据为结构化数据,来自传统的数据源,则采用数据仓库技术来存储和处理这些数据,如下图:2、数据仓库和数据库的区别?从目标、用途、设计来说。
1)数据库是面向事务处理的,数据是由日常的业务产生的,并且是频繁更新的;数据仓库是面向主题的,数据来源多样化,经过一定的规则转换得到的,用于分析和决策;2)数据库一般用来存储当前事务性数据,如交易数据;数据仓库一般存储的是历史数据;3)数据库设计一般符合三范式,有最大的精确度和最小的冗余度,有利于数据的插入;数据仓库设计一般不符合三范式,有利于查询。
3、如何构建数据仓库?数据仓库模型的选择是灵活的,不局限与某种模型方法;数据仓库数据是灵活的,以实际需求场景为导向;数仓设计要兼顾灵活性、可扩展性、要考虑技术可靠性和实现成本。
1)调研:业务调研、需求调研、数据调研2)划分主题域:通过业务调研、需求调研、数据调研最终确定主题域3)构建总线矩阵、维度建模总线矩阵:把总线架构列表形成矩阵形式,行表示业务处理过程,即事实,列表示一致性的维度,在交叉点上打上标记表示该业务处理过程与该维度相关(交叉探查)4)设计数仓分层架构5)模型落地6)数据治理4、什么是数据中台?数据中台是通过数据技术,对海量数据进行采集、计算、存储、加工,同时统一标准和口径。
数据中台把数据统一之后,会形成标准数据,再进行存储,形成大数据资产层,进而为客户提供高效服务。
这些服务和企业的业务有较强关联性,是企业所独有且能复用的,他是企业业务和数据的积淀,其不仅能降低重复建设,减少烟囱式协助的成本,也是差异化竞争的优势所在。
企业数字化转型或者信息化建设过程中,不可避免的都会产生大量的数据,而继ERP、MES与PDM等企业信息化三驾马车建设完成之后,迎面而来的就是数据治理,关于数字化、信息化的区别见数据化、信息化、数字化和智能化之间联系和区别解析(建设收藏),而数据治理的载体无非是数据仓库、数据湖与数据中台等内容,前几天我们发布了一篇关于辨析BI、数据仓库、数据湖和数据中台内涵及差异点(建议收藏)的文章,今天我们来看下几个概念的区别与联系:我们谈论数据中台之前,我们也听到过数据平台、数据仓库、数据湖的相关概念,它们都与数据有关系,但他们和数据中台有什么样的区别,下面我们将围绕数据平台、数据仓库、数据湖和数据中台的区别进行介绍。
数据仓库数据仓库(Data Warehouse),也称为企业数据仓库,它是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合存储系统,它将来自不同来源的结构化数据聚合起来,用于业务智能领域的比较和分析,数据仓库是包含多种数据的存储库,并且是高度建模的。
数据仓库系统的作用能实现跨业务条线、跨系统的数据整合,为管理分析和业务决策提供统一的数据支持。
数据仓库能够从根本上帮助你把公司的运营数据转化成为高价值的可以获取的信息(或知识),并且在恰当的时候通过恰当的方式把恰当的信息传递给恰当的人。
数据仓库的作用主要体现在企业决策、分析、计划和响应以下几个方面:数据仓库针对实时数据处理和非结构化数据处理能力较弱,以及在业务在预警预测等方面应用有一定的限制。
数据湖数据湖(Data Lake)是Pentaho公司CTO James Dixon提出来一种数据存储理念—即在系统或存储库中以自然格式存储数据的方法。
数据湖作为一个集中的存储库,可以在其中存储任意规模的结构化和非结构化数据。
在数据湖中,可以存储不需要对其进行结构化的数据,这样就可以运行不同类型的分析。
下面的定义是维基百科所给出的“数据湖”定义。
数据湖(Data Lake)是一个存储企业的各种各样原始数据的大型仓库,其中的数据可供存取、处理、分析及传输。
数据库、数据仓库、大数据平台、数据中台、数据湖对比分析一、概况层出不穷的新技术、新概念、新应用往往会对初学者造成很大的困扰,有时候很难理清楚它们之间的区别与联系。
本文将以数据研发相关领域为例,对比分析我们工作中高频出现的几个名词,主要包括以下几个方面:•数据▪什么是大数据▪数据分析与数据挖掘的区别是什么•数据库▪什么是数据库▪数据库中的分布式事务理论•数据仓库▪什么是数据仓库▪什么是数据集市▪数据库与数据仓库的区别是什么•大数据平台▪什么是大数据平台▪什么是大数据开发平台•数据中台▪什么是数据中台▪数据仓库与数据中台的区别与联系•数据湖▪什么是数据湖▪数据仓库与数据湖有什么区别与联系希望本文对你有所帮助,烦请读者诸君分享、点赞、转发。
二、数据什么是大数据?麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
我们再往深处思考一下,为什么会有大数据(大数据技术)?其实大数据就是在这个数据爆炸增长的时代,业务需求增长促进技术迭代,技术满足需求后又形成闭环促进业务持续增长,从而形成一个闭环。
数据分析与数据挖掘的区别是什么?数据分析可以分为广义的数据分析和狭义的数据分析。
广义的数据分析就包括狭义的数据分析和数据挖掘。
我们在工作中经常常说的数据分析指的是狭义的数据分析。
三、数据库据库什么是数据库?数据库是按照数据结构来组织、存储和管理数据的仓库。
是一个长期存储在计算机内的、有组织的、可共享的、统一管理的大量数据的集合。
一般而言,我们所说的数据库指的是数据库管理系统,并不单指一个数据库实例。
根据数据存储的方式不同,可以将数据库分为三类:分别为行存储、列存储、行列混合存储,其中行存储的数据库代表产品有Oracle、MySQL、PostgresSQL等;列存储的数据代表产品有Greenplum、HBASE、Teradata等;行列混合存储的数据库代表产品有TiDB,ADB for Mysql等。
数据仓库与数据挖掘教学实验平台构建研究摘要:本文在数据仓库和数据挖掘课程的特色和内容的研究基础上,讨论了该课程实验教学的重要性和意义,开发了教学实验平台。
实践表明该平台能提供在线交互式教学,有效管理教学,激发学生积极性。
关键词:实验平台;教学管理;数据仓库;数据挖掘中图分类号:g642 文献标志码:b 文章编号:1674-9324(2013)09-0253-03一、引言21世纪是国家全面推进学生素质培养的时期,计算机专业课既具有较强的理论性,又具有较深的实践性。
目前,计算机专业的教学过程中往往理论教育与实际脱节,很多学生通过了专业理论课的考试,却不能将理论付诸于实践,学生对课程知识并没有深刻的理解和消化,对课程理论的实际应用没有感观上的体验。
经调查显示,60%以上的学生认为在校期间的计算机理论课的学习对就业和实际工作帮助不大,这给学生学习计算机理论的积极性带来了消极的影响,更有很多学生热衷于参加社会上的计算机培训机构,放弃在高校的课程学习。
因此,在培养学生的理论创新能力的同时,提高学生的动手操作能力,加强学生理论联系实际的能力是计算机教学十分紧迫和必要的任务。
随着信息技术和网络技术的快速发展,在短短几年内数据仓库和数据挖掘就已经成为it信息领域广泛应用和热点研究的领域。
该领域主要是研究如何从浩如烟海的海量数据中有效地提取并挖掘知识,对其进行自动分析和汇总,是计算机行业中最热门、最有前景的领域之一[1]。
数据仓库与数据挖掘课程也顺应计算机发展的需要,进入到高校计算机教育的专业课课程列表中。
本论文在深入研究了数据仓库和数据挖掘课程的内容和特点的基础上,采用b/s(browser/server)架构,即浏览器/服务器架构,开发了web课程教学实验平台。
二、数据仓库与数据挖掘学科教学现状随着数据仓库与数据挖掘课程在各大高校成功试教后,近年来各大高校都为计算机专业都设立了数据仓库和数据挖掘课程,时至今日,其课堂理论教学已经比较成熟。
电商平台的数据仓库设计与实现随着互联网技术的不断发展,电子商务成为新的商业模式,电商平台已经成为企业和消费者交流的新平台。
然而,随着电商平台的不断发展,数据量也不断增加,如何管理和分析这些数据成为了电商平台所面临的挑战。
因此,为了更好的管理和分析大量数据,电商平台需要建立自己的数据仓库。
一、数据仓库简介数据仓库是为了满足企业分析和决策需要而建立的一种数据管理系统。
数据仓库具有决策支持和分析功能,是基于主题的、集成的、稳定的、随时间变化而更新的且支持管理决策的数据集合。
二、电商平台数据仓库的设计和实现1.需求分析在设计和实现电商平台数据仓库之前,首先需要进行需求分析。
需求分析的目的是确定数据仓库需要包含什么数据、数据的来源、数据存储方式以及数据的分析需求。
具体的需求分析包括以下几个方面:(1)确定数据仓库的主题和范围。
电商平台的数据包括交易记录、用户信息、商品信息、库存状态等信息,因此需要确定数据仓库的主题和范围。
(2)确定数据来源。
确定数据仓库的数据来源,包括各个系统的数据、外部数据源的数据等。
(3)确定数据存储方式。
确定数据存储方式,需要考虑到数据的规模、岛屿的数据集成以及数据的安全性等因素。
(4)确定数据的分析需求。
需求分析的关键是确定数据的分析需求,包括数据的分析维度、分析对象等。
2.数据集成数据集成是指将来自不同数据源的数据集成到数据仓库中。
因为电商平台的数据来源是多样的,包括终端设备、交易系统、物流系统等,因此需要进行数据集成。
数据集成的过程包括数据抽取、数据转换和数据加载三个步骤。
具体来说,数据抽取是将外部数据源中的数据抽取到本地数据库中;数据转换是将抽取的数据进行转换、清洗和质量控制;数据加载是将处理后的数据加载到数据仓库中。
3.数据建模数据建模是指利用数据建模工具将抽取的数据进行建模,分析其业务规则,形成数据模型。
在电商平台数据仓库的建模中,需要注意以下几个方面:(1)建立事实表和维度表。