第一章 煤及煤层气地质学
- 格式:ppt
- 大小:13.49 MB
- 文档页数:49
煤层气开发地质学及其研究的内容与方法一、煤层气开发地质学及其研究的内容1、煤层气地层分析煤层气地质学的研究要求从煤层的地质分析角度,对含气量、孔隙特征及煤层的延展性等进行深入地研究,以判断煤层的开采条件。
具体探讨主要有煤层内地层构造、煤层重力流动特征、煤层含气量、孔隙度、煤层延伸性等。
2、煤层地质探测技术对于煤层气的开发,煤层地质探测技术的开发是重要的研究内容之一。
一般情况下,采用放射性测井和电磁测井等技术对煤层气进行探测,了解煤层的延展性、煤的质量等情况。
3、煤层气勘探开发技术煤层气勘探开发技术是指采用复杂的工艺手段,以实现煤层气开发的技术。
主要技术措施包括煤层孔隙度测试、地层构造解释、岩心切片解释、气藏地质模拟分析等。
4、煤层气开发地质环境保护煤层气开发地质环境保护是指做好煤层气勘探开发的过程中,要充分考虑地质环境的变化,努力减少或防止煤层气开发过程中的污染,确保煤层气开发的可持续发展。
二、煤层气开发地质学及其研究的方法1、实验室测试实验室对煤层的物理性质、流学特性、岩性特征以及煤层气的含量等进行测试,以指导勘探开发煤层气。
实验室测试的常见方法有X射线衍射分析、热重分析和密度测试等。
2、多地形特征、地质判断在煤层气开发的勘查过程中,需要对地形地貌进行调查,进而对气田的位置、开发指标和形成背景进行研究,以便有效开发煤层气。
3、地球物理测量地球物理测量针对煤层的重力流动特征,利用放射性测井、电磁测井等技术,可以有效研究煤层的构造特征、孔隙特征以及含气量等,为指导煤层气的开发提供重要的依据。
4、岩心分析采用岩心分析技术,可以确定煤矿的结构形态、构造特征、煤层的延展性、气藏开发的有效性等情况,为更好地开发煤层气提供重要依据。
煤层气开发地质学理论与方法首先,煤层气的分布与形成机理是煤层气开发地质学的重要研究内容。
煤层气是在煤层埋藏过程中由有机质在高压高温条件下转化而成的天然气。
煤层气的分布受到煤层的厚度、埋深、含气量等因素的影响。
在煤层埋藏过程中,有机质在压力和温度作用下经历干酪根、初级、中级和成熟等不同阶段,形成煤层气。
煤层气的形成机理研究可以为煤层气的勘探和开发提供科学依据。
其次,煤层气的储集是煤层气开发地质学的核心问题之一、煤层气的储集形式主要有吸附储集和自由气储集两种。
吸附储集是指煤层气分子在煤矸石孔隙、裂隙和微孔等微观空间中吸附,形成紧密结合的状态;自由气储集是指煤层气分子在煤体孔隙中以自由状态存在。
煤层气的储集特征受到煤层的孔隙结构、孔隙度、构造变形等因素的影响。
通过对储集特征的研究可以确定煤层气的开发方式和有效开采方法。
此外,煤层气的运移规律也是煤层气开发地质学研究的重要方向之一、煤层气的运移受到多种因素的控制,包括煤层压力、渗透性、孔隙度、温度等。
煤层气的运移机理主要有扩散、脱附和解吸等过程。
研究煤层气的运移规律可以为煤层气开发提供指导,如确定煤层气开发的合理排采策略,优化井网布置等。
在煤层气开发地质学中,还需要开展煤层气资源量评价和勘探技术研究。
通过对煤层气资源量的评价,可以为资源开发提供基础数据。
勘探技术的研究则是为了提高煤层气的勘探效率和开发成功率。
目前,常用的勘探技术包括地球物理勘探、地质钻探和测井技术等。
总之,煤层气开发地质学是研究煤层气在地质中的分布、形成、储集、运移等规律的学科,其理论与方法的研究对于煤层气的勘探和开发具有重要意义。
通过对煤层气开发地质学的深入研究,可以为煤层气资源的高效开发和利用提供科学依据。
2009年1月中石化华东石油局 煤层气培训班讲稿孟召平 中国矿业大学(北京)第一部分:煤地质学基础第一节 煤炭及煤层气资源分布 第二节 煤田地质学概况及研究进展 第三节 煤的形成 第四节 煤层厚度及其变化分析 第五节 第六节 第七节 第八节 聚煤盆地基本类型 煤的物质组成 煤质分析及煤的分类 煤化作用及煤的变质类型第九节 煤成烃的研究第四节 煤层厚度及其变化分析基本概念 煤层结构及顶底板 煤层厚度的变化的原因 煤层厚度稳定性评价1、基本概念煤层是自然界中由植物遗体转变而成的成层可燃 沉积矿产, 由有机质和混入的矿物质所组成。
煤层是含煤岩系中有机质集中分布的部分,在含煤 岩系中常常赋存于一定的层位,与其它共生的岩石 类型构成特定的沉积序列。
煤层厚度是指煤层顶底板岩石之间的垂直距离。
根据煤层结构,煤层厚度可分为总厚度、有益厚 度和可采厚度。
煤层总厚度是顶底板之间 各煤分层和夹层厚度的总 和; 有益厚度是指煤层顶底板 之间各煤分层厚度的总和; 可采厚度是指在现代经济 技术条件下适于开采的煤 层厚度。
按照国家目前有关技术政策,根据煤种、产 状、开采方式和不同地区的资源情况等规定 的可采厚度的下限标准,称为最低可采厚度。
达到最低可采厚度以上的煤层,称可采煤层。
不同煤层的厚度有很大差 别,薄者仅数厘米,称煤 线,厚者可达二百多米。
考虑到开采方法的不同,可 采煤层的厚度可分为五个厚 度级: 煤厚0.3~0.5米为极薄煤层 0.5~1.3米为薄煤层 1.3~3.5米为中厚煤层 3.5~8.0米为厚煤层 大于8米的为巨厚煤层。
2、煤层结构及顶底板 煤层的结构煤层包含煤分层和岩石 夹层 , 不含夹石层者 称为简单结构煤层 含有夹石层者,则称 为复杂结构煤层。
煤层中的岩石夹层俗称夹矸。
夹矸一般为粘土岩、炭质泥岩或粉砂岩,有时为 石灰、硅质岩、油页岩、细砂岩或砾岩。
如我国广西晚二叠世含煤岩系的煤层中见有灰岩 透镜体 , 富集海相动物化石。
煤层气开发地质学及其研究的内容与方法煤层气是一种新型的清洁能源,具有储量大、分布广、开发成本低、环保等优点,是我国能源结构调整和可持续发展的重要组成部分。
煤层气开发地质学是煤层气勘探开发的基础,其研究内容主要包括煤层气地质特征、煤层气成藏规律、煤层气开发技术等方面,本文将从这些方面进行阐述。
一、煤层气地质特征煤层气地质特征是煤层气开发地质学的基础,主要包括煤层气的分布、储量、成因、运移、分布规律等方面。
煤层气的分布主要受煤层的厚度、埋深、煤质、构造等因素的影响,一般来说,煤层气的分布具有明显的地域性和层位性。
煤层气的储量主要受煤层的厚度、埋深、煤质、孔隙度、渗透率等因素的影响,一般来说,煤层气的储量与煤层的厚度和孔隙度呈正相关,与煤层的渗透率呈负相关。
煤层气的成因主要有生物成因、热成因和混合成因三种类型,其中生物成因是煤层气的主要成因类型。
煤层气的运移主要受煤层的渗透性、孔隙度、压力等因素的影响,一般来说,煤层气的运移具有渗流和吸附两种方式。
煤层气的分布规律主要受煤层的构造、地质构造、地质构造演化等因素的影响,一般来说,煤层气的分布规律具有明显的地质构造控制性。
二、煤层气成藏规律煤层气成藏规律是煤层气开发地质学的重要研究内容,主要包括煤层气成藏类型、成藏模式、成藏机理等方面。
煤层气成藏类型主要有单一煤层气藏、多层煤层气藏、煤岩层煤层气藏等类型。
煤层气成藏模式主要有自生型、自生自储型、自生自储自运型等模式。
煤层气成藏机理主要有生物成因、热成因、混合成因等机理,其中生物成因是煤层气成藏的主要机理。
三、煤层气开发技术煤层气开发技术是煤层气开发地质学的重要研究内容,主要包括煤层气开发方法、开发工艺、开发设备等方面。
煤层气开发方法主要有钻井开发、巷道开采、水平井开采等方法。
煤层气开发工艺主要有抽采、压裂、注气等工艺。
煤层气开发设备主要有钻机、压裂车、注气设备等设备。
四、煤层气开发地质学研究方法煤层气开发地质学的研究方法主要包括野外地质调查、地球物理勘探、地球化学勘探、数值模拟等方法。
煤层气开发地质学概念
煤层气开发地质学是研究煤层气的勘探、开发和利用的一门学科。
它主要研究煤层气的成藏规律、分布规律、富集规律、储量评价、开采技术等方面。
煤层气开发地质学是指通过地质学的方法,研究煤层气的地质特征、分布规律、成藏条件和运移特征等,为煤层气的勘探开发提供科学依据。
主要包括以下概念:
1.煤层气:指在煤层中吸附或储存的天然气,主要成分为甲烷。
2.煤储层:指含有煤层气的煤层,具有一定的储气能力。
3.丰度:指煤层气在煤储层中的分布量,通常用亿立方米/平方千
米(EKM/km2)来表示。
4.渗透率:指煤储层中煤层气向孔隙、裂缝或裂隙中运移的能力,
通常用mD(毫达西)来表示。
5.含气量:指煤层中单位质量(或体积)的煤能够释放出的煤层气
量,通常用m3/t(或m3/m3)来表示。
6.吸附:指煤层气吸附在煤储层孔隙中的现象,是煤层气储存的主
要方式之一。
7.储层压力:指煤储层中煤层气所受的压力,是煤层气开采的重要
参数之一。
8.采气半径:指煤层气开采时,从井口到煤储层边界的距离,是评
价煤层气开采效果的重要指标之一。
9.水文地质条件:指煤层气开采区域的地下水分布及其运移规律,
对煤层气开采影响很大。
10.煤层气富集规律:指煤层气在地质历史过程中形成和富集的规
律,对煤层气开采的合理性进行论证和预测。
第一章绪论1、天然气:(广义)所谓天然气是指自然界一切天然生成的气体。
(狭义)目前仅限于地壳上部存在的各种天然气体,包括烃类气体和非烃类气体。
性评2、天然气的来源机制,可分为无机成因气和有机成因气。
天然气的成因分类可分为4种:生物成因气(细菌气)、油型气(油成气)、煤型气(煤成气)、无机成因气。
3、煤型气(煤成气):指煤系有机质(包括煤层和煤系地层中的分散有机质)在变质过程中(即热演化)形成的天然气,也称煤成气。
包括煤系气与煤层气两类。
煤系气:是指从生气母岩(煤系地层及煤层)中运移出来聚集在储集层中甚至形成气藏的煤型气,一般均经过较大规模运移。
属常规天然气。
❤煤层气:是指赋存于煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主并部分游离于煤孔隙中或溶解于煤层水中的烃类气体。
属非常规天然气范畴。
(也称煤层吸附气、煤层甲烷或煤层瓦斯。
)4、三重国家需求:资源利用/矿山安全/环保5、全国累计探明面积777km2,探明储量1343亿m3,可采储量621亿m3,初步探明374亿m3。
❤6、我国煤层气研究开发存在的主要问题:①预测理论亟待完善。
②产能预测技术有待解决。
③开发工艺亟待突破。
④投入严重不足。
⑤煤层气基础设施建设不完善。
7、我国煤层气资源存在低压、低渗、低饱和的“三低”现象以及地质变动的特殊性。
我国煤储层的特点和难点:地史复杂、类型多样、改造强烈;低孔、低渗、低相渗、低压、高非均质性。
第二章煤层气的物质组成、性质和利用❤1、煤层气有两种基本成因类型:生物成因和热成因。
生物成因气:各类微生物经过一系列复杂作用过程导致有机质发生降解而形成的。
热成因气:指随着煤化作用的进行,伴随温度升高、煤分子结构与成分的变化而形成的烃类气体。
2、生物成因气阶段:①早期生物气(泥炭~褐煤阶段,Ro,max<0.5%)②热解型煤层气(褐煤~瘦煤阶段,Ro,max0.5~2.0%)以含氧官能团的断裂为主③裂解型煤层气(瘦煤~二号无烟煤,2.0%<Ro,max<3.7%)主要以裂解的方式及芳香核缩合为主④次生生物成因煤层气(褐煤~焦煤,0.3%<Ro,max<1.5%)3、在含煤盆地中,次生生物作用活跃并影响气体成分的深度间隔称作蚀变带,一般位于盆地边沿或中浅部;不发生蚀变的气体一般位于盆地深部,称为原始气带。
Chemical Society,38(2),1916:221~295Adam Nodzenski.Sorption and desorption of gases (CH4, CO2)on hard coal and active carbon at elevated pressures.Fuel,77(11),1998:127~141Airey,E.M.,Gas emission from broken coal, an experimental and theoretical investigation. International Journal of Rock Mechanics and Mining Sciences, 1968, (5):475-494Airey,L.E.,Yee D,Morgan,W.D.,Jeansonne,M.W. Modeling coalbed methane production with binary gas sorption.SPE Paper24363, presented at the SPE Rocky Mountain Regional Meeting, Casper, Wyoming, 1992Aleksandra M,Andrzei M.Kinetics of CO2 and CH4sorption on high rank coal at ambient temperatures.Fuel,77(14),1998:524~557Alexeev A D, Ulyanova E V, Starikov G P, Kovriga N N. Latent methane in fossil coals. Fuel, 2004, 83(10): 1407-1411Ammosov,I.,Eremin,I.V. Fracturing in coal. Washington D.C. IZDAT Publishers,Office Technical Services, 1954ASTM D1412-93.Standard test method for moisture in the analysis sample of coal and coke.1993Ates Y,Barron.Effect of gas sorption on the strength of coal.Min Sci.Tech.6(3)1988, 291~300 Ayers W B et al. Geological and Hydrologic Controls to the Occurrence and Producibility of Coalbed Methane. The University of Texas at Austin, Topical Report Prepared for GRI, 1991. GRI-910072Ayers, W.B., Ambrose, J.W.A., Yeh, J., Depositional and structural controls on coalbed methane occurrence and resources in the Fruitland Formation, San Juan Basin. In: Ayers, W.B., Kaiser, J.W.R., Laubach, S.E.et al.(eds.),Geologic and Hydrologic Controls on the Occurrence and Reducibility of Coalbed Methane, Fruitland Formation, San Juan Basin: Gas Research Institute Topical Report,GRI91/0072,1995.9-46Bell G J,Rakop K C.Hysteresis of methane/coal sorption isotherms.SPE 15454 SPE65th Annual Technical Conference and Exhibition,New Orleans,LA,September,1990 :29~34 Borisenko A A.Effect of gas pressure on stress in coal strate.Soviet mining science.(1),1985:88~91Boyer II C M, Bai Q. Methodology of coalbed methane resource assessment. Int J Coal Geology, 1998, 35(1-4): 349-368Brunauer S, Emmet P H, Teller E. Journal American. Chemical. Society, 1938, 60: 309Bumb A C, McKee C R. Gas-well testing in the presence of desorption for coalbed methane and Devonian shale. In: SPE/GRI/DOE 15227 presented at the SPE/GRI/DOE Unconventional Gas Technology Symposium.Louisville,Kentucky,1986Bustin R M.Importance of Fabric and Composition on the Stress Sensitivity of Permeability in Some Coal,Northern Sydney Basin,Australia:Relevance to Coalbed Methane Exploitation.AAPG Bulletin,81(11),1997:314~327Clarkson C R,M.Bustin R.加拿大科迪勒拉白垩系煤的渗透率随煤岩类型和煤岩显微组分组成的变化.李贵中译,傅雪海校,煤层气,14(3),1997:12 ~22Clayton,J.L. Geochemistry of caolbed gas-A review. International Journal of Coal Geology, 1998, (35):159-l73Close J C.Natural fracture in coal.In:Hydrocarbons from coal,Law B E and Rice D D,eds.AAPG,Studies in Geology #38,1993:119~132.Close J C. Natural fractures in bituminous coal gas reservoir. Gas Research Institute TopicalReport No.GRI91/0337,1991Colombo U, Gazzarrini R. Carbon isotope study on methane from German coal deposits. In:Hobon G.D., Speers,G.C.(eds.) Advances in Organic Geochemistry 1966,Pergamon Press, Oxford, 1970:1~26Cornelius C T, Hartley A, Gayer R, et al. Coal deposition and tectonic history of the South Wales Coalfield, U K: Implications for coalbed methane resource development.In:Proceedings of the 1993 International Coalbed Methane Symposium,1993.161-172Cunningham R E.Diffuse in gas and porous media.PLENUM PRESS.1980:153~155,206~216 Decker D等.澳大利亚昆士兰州鲍恩盆地的煤层甲烷勘探战略.见:煤层甲烷地面开发译文集(一),煤炭科学研究总院西安分院编.1989,317-330Diamond,W.P.,Levine,J.R.,Direct Method Determination of Gas Content of Coal:Procedures and Results U S. Bureau of Mines Report of Investigations RI8515.1981Donner L, Ramanathan V. Methane and nitrous oxide-Their effects on the terrestrial climate. J. Atmospheric Science, 1980:(37):119~124Elliot M A.煤利用化学.徐晓,吴奇虎,鲍汉琛等译. 北京:化学工业出版社,1961:142~152Enever J R,Henning A.The relationship between permeability and effective stress for Australian coal and its implications with respect to coalbed methane exploration and reservoir modeling.Proceedings of the 1997 International Coalbed Methane Symposium,Alabama,1997:241~253Ettinger I,Zimakov B,Yanovskaya M.Natural factors influencing coal sorption properties -petrography and the sorption properties of coals.Fuel,45,1966:243~259Ettinger,I.L. Systematic Handbook for the Determination of the Methane Content of Coal Seams from the Seam Pressure of the Gas and the Methane Capacity of Coal.National Coal Board, Moscow,Translation No.A1606/SHE,1958eucroft P J.,Patel H.Gas induced swelling in coal.Fuel,65,1986:816~820Fischer P A. Unconventional gas resources fill the gap in future suppliers. World Oil, 2004, 225(8): 41-44Fitzgerald J E, Sudibandriyo M, Pan Z et al. Modeling the adsorption of pure gases on coals with the SLD model. Carbon, 2003, 41(12): 2203-2216Flores R M. Coalbed methane: From hazard to resource. Int J Coal Geology, 1998, 35(1-4): 3-26 Friesen, W I,Mikule R J. Fractal dimensions of Coal Particles. Journal of Colloid and Interface Science. 20(1),1987:263~271Fu Xuehai, Qin Yong, Zhang Wanhong, Zhou Rongfu. Classification of CBM reservoirs based on hydrogeological conditions and productivity. In: Mining Science and Technology. Wang Yuehan, Ge Shirong, Guo Guangli(eds), A.A. Balkema, a member of Taylor & Francis Group plc, The 5th International Symposium on Ming and Technology, China University of Ming and Technology, Xuzhou 221008, CHINA,2004,321~324Fu Xuehai,Qin Yong,Jiang Bo,Wang Wenfeng,Zhou Shining.Experiment and study on multiphase medium permeability of middle to high-rank coals in China.Journal of China University of Mining & Technology,2003,13(1):11~15Fu Xuehai,Qin Yong,Zhang Wanhong,Wei Chongtao,Zhou Rongfu. Fractal Classification and Natural Classification of Coal Pore Structure Based on Migration of Coal Bed Methane. Chinese Science Bullletin, 2005,50 (Supp):66~71Gamson P,Beamish B,Johnson David. Effect of coal microstructure and secondary mineralization on methane recovery. Geological Special Publication.(199)1998:165~179 Gan H,Nandi S P,Walker P L. Nature of the porosity in American coals. Fuel,51,1972:272~277 Gan,H.,Nandi,S.P.,Walker,P.L.,Porosities of coals.Fuel,1972.51(3):272-285Gas Research Institute. A guide to coalbed methane reservoir engineering. GRI reference No.GRI-94/0397, 1996, Chicago, IllinoisGash B W,Volz R F,Potler et al.The effect of cleat orientation and confining pressure on cleat porosity,permeability and relative permeability in coal.In:9321 Proceedings of the 1993 International Coalbed Methane Cymposium,Alabama,1993:347~359Gash B W.Measurement of the rock properties in coalbed methane.In:Proceedings of the 1991 SPE Annual Technical Conference & Exhibition,Dallas Texas USA,Oct.6~9,SPE 22909:221~230Gash,B.W.,Volz,R.F.,Potter,G.et al.,The effects of cleat orientation and confining pressure on cleat porosity,permeability and relative permeability in coal.In:Proceedings of the 1993 International Coalbed Methane Symposium,1993.247-256Gatens M. Coalbed methane development: Practices and progress in Canada. J Canadian Petroleum Technology, 2005, 44(8): 16-21Gayer R and Harris I (eds). Coalbed Methane and Coal Geology. Geol. Soc. Special Pub. No.109, 1996Georg J D St, Barakat M A. The change in effective stress associated with shrinkage from gas desorption in coal. Int J Coal Geology, 2001, 45(1-2): 105-113Harpalani S,Shraufnagel R A.Shrinkage of coal matrix with release of gas and its impact on permeability of coal.Fuel,69,1990a:551~556Harpalani S.Pariti U M.Study of coal sorption isotherm using a multi-component gas mixture.1993 International Coalbed Methane Symposium,Alabama,1993:321~337 Harpalani,S.,Chen G.,Gas slippage and matrix shrinkage effects on coal permeability.In:Proceedings of the 1993 International Coalbed Methane Symposium,1993.285-294Harpalin S.& Miphreson M J.The effect of gas pressure on permeability of coal.2nd US Mine Ventulation Symp.Reho.(1)1986:369~375Hawkins,J.M.,Schraufnagel,R.A.,Olszewski,A.J.,Estimating coalbed gas content and sorption isotherm using well log data.SPE24905,1992Hogan,K.B.,Hoffman,J.S.,Thompson,A.M.,Methane on the greenhouse agenda. Natura, 1991.(354):181 -182Hollub,V.K.,Schafer,P.S.,A Guide to Coalbed Methane Operation.Chicago,Illinois,GRI,1992 Hood G D. Proceedings of the 2001 International Coalbed Methane Symposium. Tuscaloosa, 2001 Horner D M. In-Situ Stresses: A Criticai Factor Influencing Hydraulic Fracture Performance in Australia Coal Basins. In: Proceedings 1991 Int. CBM Symp., 1991, 445-450Hoyer D L..Evaluation and confirmation of coal seam fractures from dual-laterolog.Proceedings of the 1993 International Coalbed Methane Symposium,Alabama,1993:229~243Hucka B P.Analysis of cleat in Utah coal seams Utah Geological and Mineral Survey Open-file Report 154,1989:156~171Hudson J A.岩石力学原理.岩石力学与工程力学学报,(3),1989:127~134 ISRM.Commission on standardization of laboratory and field tests,Suggest methods fordetermining water content,porosity,density,absorption and related properties and swelling and slake durability index,Document No.2,First Revision.In rock characterization,Testing and monitoring (ET.Brown,ED),Pergamon Press,Oxford,1981Johnson R C, Flores R M. Developmental geology of coalbed methane from shallow to deep in Rocky Mountain basins and in Cook Inlet–Matanuska basin, Alaska, U.S.A. and Canada. Int J Coal Geology, 1998, 35(1-4): 241-282Jone A H.Methane production characteristics of deeply buried coalbed reservoir.Gas Research Institute GRI85/0033,NTIS PB85-223386,1985:144~157Joubert J I,Grein CT,Biebstock D.Effect of moisture on the methane capacity of American coals.Fuel,53,1974~54~67Joubert,J.I.,Sorption of methane in moist coal.Fuel,1973.(52):181-185Katz A J,Thompson A H.Fractal sandstone pores:implications for conductivity and formation. Phys Rev Lett 54(3),1985:1325~1328Kim,A.G.,Estimating methane content of bituminous coalbeds from adsorption data.U.S.Bureau of Mines Report of Investigations,RI8245,1997King,G.R.,Ertekin,T.M.,A survey of mathematical models related to methane production from coal seams,part I:empirical and equilibrium sorption models.In:Proceedings of the 1989 Coalbed Methane Symposium.The University of Alabama/Tuscaloosa,1989.125-138King,G.R.,Ertekin,T.M.,A survey of mathematical models related to methane production from coal seams,part II:non-equilibrium sorption models.In:Proceedings of the 1989 Coalbed Methane Symposium.The University of Alabama/Tuscaloosa,1989.139-155Kissell,F.N.McCulloch,C.M.Elder,C.H.,The Direct Method of Determining Methane Content of Coals for Ventilation Design. U.S.Bureau of Mines Report of Investigations RI7767.1981 Klinkenberg,L.J.,The permeability of porous media to liquids and gases.API Drilling and Production Practices,1941.200-213Koening,R.A.,Dean,A.K.,Luoton,G.,A two-phase well testing tool to measure relative permeability of coal.In:Proceedings of the 1993 International Coalbed Methane Symposium,1993.257-262 Kroch C E.Sandstone fractal and euclidean pore volume distributions.Geo Phys Res 93(B4),1988:3286~3296Krooss B M, van Bergen F, Gensterblum Y et al. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals. Int J Coal Geology, 2002, 51(1): 69-92Langmuir I.The constitution of fundamental properties of solids and liquids.Journal of American Chemical Society,1916,38(2)221~295Larsen J.W., Wei Y.C., Macromolecular of chemistry. Molecular weight distribution of pyridine extracts. Energy and Fuels,1988.2:344-350Laubach,S.E.,Marrett,R.A.,Olson,J.E.et al.,Characteristic and origins of coal cleat:A review.International Journal of Coal Geology,1998.(35):175-208Law,B.E.,The relationship between coal rank and cleat spacing:Implication for the prediction of permeability in coal.In:Proceedings of the 1993 International Coalbed Methane Symposium,1993.435-442Levine J R, Johnson P and Beamish B. High pressure microbalance sorption studies. Proc 1993 Int CBM Symp, 1993Levine J R.Coalification:the evolution of coal as source rock and reservoir rock for oil and gas.In:Law B E.Rice D D.(eds),Hydrocarbons from coal.American Association ofPetroleum Geologist,Studied in Geology,38,1993:39~77Levine,J.R.,Coalofication:The evolution of coal as source rock for oil and gas. In: Law,B.E,Rice, D.D.(eds.), Hydrocarbons from Coal,AAPG Studies in Geology 38,1993.39-77Levine,J.R.,Influence of coal composition on the generation of coal nature gas. In:Proceedings of the l987 Coalbed Methane Symposium,Tuscaloosa,Alabama, 1987. l5-18Levine,J.R.,Model study of the influence of matrix shrinkage on absolute permeability of coal bed reservoir.In:Gayer,R.,Iharris,I.(eds.),Coalbed Methane and Coal Geology.Geological Society Special Publication No.109,1996.197-212Levy J H,Day S J,Killingley J S. Methane capacities of Bowen Basin coals related to coal properties[J].Fuel,1997,76(9):813~819Lwvine,J.R.,Johnson,P.,Beamish,B.B.,High pressure microbalance sorption studies.In:Proceedings of the 1993 International Coalbed Methane Symposium,1993.187-195Lyons P C. The central and northern Appalachian Basin—a frontier region for coalbed methane development. Int J Coal Geology, 1998, 38(1-4): 61-87Macrae,J.C.,Lawson,W.,The incidence of cleat and fracture in some Yorkshire Coal Seams.Transaction of the Leeds.Geological Association,1954.(6):224-227Mahajan,O.P.,Coal porosity.In:Meyers,R.A.(ed.),Coal structure.New York:Academic Press,1982,51-52Mastalerz M, Glikson M, Golding S D. Coalbed Methane: Scientific, Environmental and Economic Evaluaion. Boston: Kluwer Academic Publishers, 1999Mavor M. J,Owen L.B and Pratt T.J,Measurement and evaluation of coal sorption isotherm data . SPE 20728,SPE 65th Annual Technical Conference and Exhibition,New Orleans,LA,September,1990 :23~26Mavor,M.J.,Close,J.C.,McBane,R.A.,Formation evaluation of exploration coalbed methane wells. CIM/SPE90-101,1990Mavor,M.J.,Close,J.C.,Western cretaceous coal seam project evaluation of the Hamilton 3 well operated by mesaoperating limited partnership.Gas Research Institute Topical Report No.GRI90/0040,1989McCulloch C M,Deul Maurice,Jeran P W.Cleat in bituminous coal beds.U S Bureau of Mines Report of Investigations No 8092,1974:22~37McKee,C.R.,Bumb,A.C.,Koening,R.A.,Stress-dependent permeability and porosity of coal.Rocky Mountain Association of Geologists,1988.143-153Mclennan J D,Khodaverdian M,Jones A F.裸眼洞穴的形成-理论及其实验结果.潘结南译,苏现波校,煤层气,13(2),1997:57~64Meyers R A. Coal structure . New York:Academic Press,1982:78~83Miyazaki S. Coalbed methane growing rapidly as Australia gas supply diversifies. Oil and Gas Journal, 2005, 103(28): 32-36Moffat D H,Weale K E.Sorption by coal of methane at high pressure.Fuel,34,1955:417~428 Mullen M J.Log evaluation in well drilled for coalbed methane.Rocky Mountain Association of Geologists,1989: 113~124NEB. Canada’s Energy Future: Scenarios for Supply and Demand to 2025. Canada National Energy Board Report, Calgary, AB, 2003Olson T, Hobbs B, Brooks R et al. Paying off for Tom Brown in White River Dom Field’s tight sandstone, deep coals. The American Oil and Gas Reports, 2002, 10. 67-75Olszewski,A.J.,Zuber,M.D.,Schraufnagel,R.A.,McLennan,J.D.,Integration of log,core,and well test data improves coalbed methane reservoir evaluation.In:Proceedings of the 1989 Coalbed Methane Symposium.The University of Alabama/Tuscaloosa,1993.263-272Pabone,A.M.,Schwerer,F.C.,Development of coal gas production simulators and mathermatical models for well test strategies.Final Report under GRI Contracr Number 5081-321-0457,1984 Palmer I D,Metcalfe R S,Yee D,et al. 煤层甲烷储层评价及生产技术. 秦勇,曾勇编译.徐州:中国矿业大学出版社,1996:16~17Palmer I, Mansoori J: How permeability depends on stress and pore pressure in coalbeds: a new model, paper SPE 36737 presented at the 1996 Ann. Tech. Conf., Denver, Colorado, 1996 Pariti,U.M.,Harpalani,S.,Study of coal sorption isotherms using a multicomponent gas mixture.In:Proceedings of the 1993 International Coalbed Methane Symposium,1993.151-160 Pashin J C, Groshong Jr R H. Structural control of coalbed methane production in Alabama. Int J Coal Geology, 1998, 35(1-4): 89-113Patchen D G, Schwietering J F, Avary K L et al. Coalbed gas production, Big Run and Pine Grove fields, Wetzel County, WV. West Virginia Geological and Economic Survey Publication, 1991, C-44: 33Paul G. W, Sawyer, W K, Dean, R H. V alidation of 3D coalbed simulators. Paper 6SPE20733, presented at the 65th SPE Annual Technical Conference and Exhibition, New Orleans, LA, Sept. 23-26, 1990: 203-210Pavone A M and Schwerer F C. Development of coal gas production simulators and mathematical models for well test strategies. Final Report under GRI Contract Number 5081-321-0457, April, 1984Pfeifer P,Avnir D.Chemistry in nointegral dimensions between two and three.J Chem Phys 79(7),1983:3368~3558Pratt T J, Mavor M J et al. Coal Gas Resource and Produc2 tion Potential of Subbituminous Coal in the Powder River Basin. The symposium of the 1999’ Intl coalbed methane . USA: Berminham,1999: 23-34Price,H.S.,McCulloch,R.C.,Edwards,J.C.et al.A computer model study of methane migration in coal beds.The Canadian Mining and Metallurgical Bulletin,1973.66(737):103-112Puri R,Evanoff J C,Brulger M L.煤割理孔隙率与相渗透率特性的测试.李正越,曾勇译.见秦勇,曾勇主编译.煤层甲烷储层评价及生产技术.徐州:中国矿业大学出版社.1996:58~66Puri R, Seidle J: Measurement of stress dependent permeability in colas and its influence on coalbed methane production, Proc. 1991 Coalbed Methane Symp., Tuscaloosa, Alabama, 1991. 415–424Puri R,Evanoff J C,Brulger M L.Measurement of coal cleat porosity and relative permeability characteristics In:SPE 21491,1993:257~269Puri R,Yee D.Enhanced coalbed methane recovery.Proceedings of the Society of Petroleum Engineers,New Oleans,LA,SPE 20732.1990:146~159Qin Yong, Fu Xuehai, Jiao Sihong et al. Key geological controls to formation of coalbed methane reservoirs in Southern Qinshui Basin of China: I, Hydrological conditions. In: Proceedings of the ‘2001 Int Coal bed Methane Symposium, US Environmental Protection Agency (ed). Berminhanm: The University of Alabama, 2001. 21-28Qin Yong, Fu Xuehai, Jiao Sihong et al. Key geological controls to formation of coalbed methane reservoirs in Southern Qinshui Basin of China: II, Modern tectonic stress field and burial depth ofcoal reservoirs. In: Proceedings of the ‘2001 Int Coalbed Methane Symposium, US Environmental Protection Agency (ed). Berminhanm: The University of Alabama, 2001. 363-366Qin Yong, Fu Xuehai, Wu Caifang et al. Self-adjusted elastic action and its CBM pool-forming effect of the high rank coal reservoir. Chinese Science Bulletin, 2005, 50(Supp): 1-5Qin yong, Fu Xuehai, Ye Jianping et al.Geological Controls and Their Mechanisms of Coal-Reservoir Petrography and Physics of Coalbed Methane Occurence in China.In:Proceedings of the 99 International Coalbed Methane Symposium.Tuscaloosa, USA,1999Qin Yong, Ye Jianping and Lin Dayang. Geological seeking for potential CBM-accumulating zones and districts in China. In: Proceedings of the ’2000 Int Symposium on Mining and Science and Technology, Xie Heping and Golosinski T S (ed). Rotterdam: Balkema Publishers, 2001. 243~246Qin Yong, Zhang Demin,Fu Xuehai, et al. Discussion on Correlation of Modern Tectonic Stress Field to Physical Properties of Coal Reservoirs in Central and Southern Qinshui Basin In:Proc.31th Int: Geol. Congr.,Brazil,2000:457~462Radovic L R, Menon V C, Leon Y et al. On the porous structure of coals: Evidence for an interconnected but constricted micropore system and implications for coalbed methane recovery. Adsorption, 1997, 3(3): 221-232Repine Jr T E. Coalbed methane—A new West Virginia industry?: Mountain State Geology, Spring, 1990 6–7.Reucroft P J,Patel H.Gas-induced swelling in coal.Fuel,65,1986:816~820Rice D.D.,Claypool,G.E.,Generation,accumulation,and resource potential of biogenic gas.AAPG Bull.,198l.(65):5-25Rice,D.D.,Composition and origins of coalbed gas. In:Law,B.E.Rice,D.D.(eds.),Hydrocarbons from Coal,AAPG Studies in Geology 38, 1993.159-l84Rightmire C T, Eddy G E, Kirr J N (eds). Coalbed Methane Resources of the United States AAPG, 1984. 1-14Robert S E. North American coalbed methane development moves forward. 2005, 226(8): 57-59 Robert S E. What's new in production World Oil, 2005, 226(2): 21Ruppel,T.C.,Adsorption of methane on dry coal at elevated pressure. Fuel,1973.(53):152-162 Saulsberry J L,Schraufnagel R A.Study of the influence of the change of permeability and other parameters to coalbed methane recovery.In:9321 Proceedings of the 1993 International Coalbed Methane Symposium,1993:256~264Sawyer,W.K.,Zuber,M.D.,Kuuskraa,V.A.,Horner,D.M.,Using reservoir simulation and field data to define mechanisms controlling coalbed methane production.In:Proceedings of the 1987 Coalbed Methane Symposium University of Alabama/Tuscaloosa,1987.295-307Scholes,P.L.,Johnson,D.,Coalbed methane application of wireline logs,AAPG studies in Geology 38,1993.287-302Schraufnagel R A, McBane RA, Kuuskraa V A. Oil and Gas Journal, 1989, (9): 39-43 Schraufnagel R A. Coalbed Methane Production. In: Hydrocarbons from Coal, Law B E and Rice D D (eds). AAPG Studies in Geology #38,1993. 341-360Schraufnagel R A.,Hill D G.等.煤层甲烷—成功的十年.张建博译.煤层气,(3),1996:50~64.61ths Annual Technical Conference and Exhibition,New Orleans,LA,October,1986:5~8Scott A R, Kaiser W R, Ayers W B. Thermogenic and secondary biogenic gases, San Juan Basin, Colorado and Nex Mexico: Implications for coalbed gas producibility. AAPG Bulletin, 1994,78(8): 1186-1209Scott A.R., Composition and origin of coalbed gases from selected basins in the United States. In: Proceedings of the l993 International Coalbed Methane Symposium, Tuscaloosa, Alabama,l993.207-222Scott A.R.,Composition and origin of coalbed gases from selected basins in the United States.In:Proceedings of the l993 International Coalbed Methane Symposium, Tuscaloosa, Alabama, l993.207-222Shige M. Coalbed methane growing rapidly as Australia gas supply diversifies. Oil and Gas Journal, 2005, 103(28): 32-36Smith,D.M..Williams,F.L.,A new technique for determining the methane content of coal.Proceedings of the 16th Intersociety Energy Conversion Engineering Conference,1981.1267-1272Somerton,W.H.,Effect of stress on permeability of coal.J.Rock.Mech.Min.Sci.and Geomech.Abstr.V ol.2.Pergamon Press,Great Britain,1990.129-145Stach E., Mackowsky M.T., Teichmuller M. et al. Atach’s Textbook of Coal Petrology, 3rd ed. Gbruder Borntraeger, Berlin, Stuttgart, Germany, 1982Terrald L. Saulsberry, Pauls, Schaler, Richard A. Schraulnagel. Coalbed methane reservoir engineering, published by Gas Research Znseitute, Chicago, Linois, U.S.A. 1996:pp658-662 Terzaghi K. V. Theoretical soil mechanics. Wiley, New York, 1923Thomas J.Damberger H H.Internal surface area, moisture content and porosity Illinois coals-variations with rank.Illinois State geology survey circular,493,1976:714~725Ting F.T.C. Origin and spacing of cleats in coalbeds.Journal of Pressure Vessel Technology,1977 Tissot B P, Pelet R, Ungerer P H. Thermal history of sedimintary, maturatio indices and kinetics of oil and gas generation. AAPG Bull, 1988, 72: 115~134Tissot B P, Welte DH. Petroleum formation and occurrence (2nd Edition). Berlin: Springer-Verlag, 1984Tremain C M,Whitehead N H.Natural fracture (cleat and joint)characteristics and pattern in Upper Cretaceous and Tertiary rocks of the San Juan basin.Gas Research Institute GRI90/0014,(1)1990:73~84Tyler R.,Laubch S E.Effects of compaction on cleat characteristics.Gas Research Institute GRI91/0072,1991:141~151Tyler R.,Scott,A.R.,Kaiser,W.R.et al.,Geologic and hydrologic controls critical to coalbed methane producibility and resource assessment:Williams Fork Formation Pisceans Basin,Northwest Colorado.Gas Research Institute Topical Report,GRI95/0532,1995Tyler ubach,S.E.,Ambrose,W.A.et al.,Coal fracturing patterns in the foreland of the Cordilleran thrust belt,west United States.In:Proceedings of the 1993 International Coalbed Methane Symposium,1993.695-704Tyler S.C. The global methane budget.In:Rogers,J.E.,Whitman,W.B.(eds.),Microbial Production and Consumption of Greenhouse Gases:Methane,Nitrogen Oxides,and Halomethanes,American Society for Microbiology, Washington,1991,7-38Ulery J P, Hyman D M. The direct method of gas content determination:Application aqnd results.Proceeding of the 1991 Coalbed Methane Symposium.University of Alabama /Tuscaloosa,1991,489-497Ungerer P. Basin evaluation by integrated two-dimensional modeling of heat transfer fluid flow,hydrocarbon generation and migration. AAPG Bull, 1990,74(3)Van Krevelen,D.W.,Coal.Amsterdam:Elservier Publishing Co,1981Vasyuchkov Y F.A study of porosity, permeability and gas release of coal as it is saturation with water and acid solutions.Soviet mining science,(1),1985:81~88Walker P L.Densities,porosities and surface area of coal macerals as measured by their interaction with gases,vapours and liquids. Fuel 1988,67(10):1615~1623Walls,J.,Nur,A.,Dvorkin,J.,A slug test method in reservoir with pressure sensitive permeability.In:Proceedings of the 1991 Coalbed Methane Symposium,1991.97-105Walsh J B.Effect of pore pressure and confining pressure on fracture permeability .Int:J.Rock Mech.Min.Sci.V ol.18,1981:429~435Warpinsky N R,Teufel L W,Graf D C.Effect of stress and pressure on gas flow through natural fractures SPE 22666.1991:105~119 [160] Witten T A ,Sander L M.Diffusion-Limited Aggregation.Phys Rew B,27:5686,1983:53~62Warrenh,J.E.,Root,P.J.,The behavior of naturally fractured reservoirs.Society of Petroleum Engineers Journal,September,1963.245-255White J M.Mode of Deformation of Rosebard Coal,Colstrip,Montan:room temperature,102.0MPa.Int J.Rock,Min.Sci.& Geomech.Abstr.17(2),1980:129~130wkins J M,Schraufuagel R A,Olszewski A J,et al.Estimating coalbed gas content and sorption isotherm using well log data. SPE 24905,1992.:147~159Wo. US gas well growth continues. World Oil, 2005, 226(2): 52Yang R T,Saunders J T.Adsorption of gases on coals and heat-treated coals at elevated temperature and pressure.Fuel,64,1985:314~327Yee,D.,Seidle,J.P.,Hanson,W.B.,Gas sorption on coal and measurement of gas content. In:Law,B.E., Rice,D.D.(eds.).Hydrocarbons from Coal.American Association of Petroleum Geologists,Studies in Geology,1993.(38):203-218Κрαвдов,煤田天然气的几个值得研究的地质及地球化学问题. 戚厚发译. 石油地质论文集,1983:89~100ΧoдoтB B. 煤与瓦斯突出. 宋世钊,王佑安译.北京:中国工业出版社,1966:27~30 DZ/T0216—2002. 煤层气资源/储量规范. 中华人民共和国地质矿产行业标准,2003-03-01 艾鲁尼.AT.唐修仪,宋德淑等译.煤矿瓦斯动力现象的预测和预防.北京:煤炭工业出版社,1992:142~147包剑影,苏燧,李贵贤,等.阳泉煤矿瓦斯治理技术.北京:煤炭工业出版社,1996:114~128 陈昌国. 煤的物理化学结构和吸附(解吸)甲烷机理的研究. [博士学位论文].重庆:重庆大学,1995陈家良,张有生,秦勇. 储层渗透率的非均质性模型. 中国矿业大学学报,1998, 27(10):43-46陈荣书. 天然气地质学. 武汉:中国地质大学出版社,1991 第二版.陈振民, 许胜利. 煤层气地面开采对环境影响初探. 煤矿环境保护,. 1999, 13(1): 39-40程宝洲. 山西晚古生代沉降环境与聚煤规律. 太原:山西科学技术出版社,1992崔永君, 杨锡禄, 张庆铃. 煤对超临界甲烷的吸附特征. 天然气工业, 2003, 23(3): 131-133大冢一雄.煤层瓦斯渗透性的研究—粉煤成型煤样的渗透率.煤矿安全,1982 :11~16地矿部华北石油地质局,煤层气译文集。
课程编号:05108煤层气地质学2学分 32学时一、课程的性质、目的及任务本课程为地质工程专业资源勘查工程专业方向选修课程。
目的在于使学生初步掌握煤层气的基本概念、煤储层物性特征、煤层气资源评价方法,了解煤层气井的完井技术与增产措施、煤矿瓦斯的成因及井下瓦斯抽放方式。
使学生能运用这些理论和方法解决煤层气勘探开发工作中遇到的有关地质问题。
二、适用专业地质工程三、先修课程构造地质学、矿物岩石学、能源地质学。
四、课程的基本要求1.理解煤层(成)气、煤矿瓦斯等基本概念2.了解煤层气的物理性质、化学组成及利用方向3.了解煤储层孔、裂隙(割理)的分类和影响因素4.了解煤储层渗透率的测试方法、影响因素及数值模拟5.了解煤层含气性、吸附/解吸特征、饱和度、理论采收率及其影响因素6.了解煤层气资源的评价方法与可采资源量的估算7.粗步了解煤层气井的完井技术与增产措施8.大致了解煤矿瓦斯的成因及井下瓦斯抽放方式五、课程教学内容(一)课堂讲授的教学内容1.绪论开发煤层气的意义及煤层气勘探开发现状2.煤层气的物理性质、化学组成及利用方向1)煤层(成)气、煤矿瓦斯等基本概念2)煤储层的基本概念及几何学要素3)煤层气的物理性质、化学组成及利用方向3.煤储层孔、裂隙(割理)特征1)煤储层孔、裂隙(割理)的分类2)煤储层孔、裂隙(割理)的研究方法3)煤储层孔、裂隙(割理)的形成及影响因素4.煤储层渗透性特征1)绝对渗透率与相对渗透率的概念与测试方法2)煤储层渗透性的影响因素3)煤储层渗透率的数值模拟5.煤层的含气性特征1)煤的吸附/解吸特征、2)煤储层的含气量、流体压力及饱和度3)影响煤层含气性的因素4)煤层含气性预测6.煤层气资源评价1)煤层气资源评价参数2)煤层气资源级别划分依据3)煤层气可采资源量估算7.煤层气井的完井技术与增产措施1)煤层气井的完井方式与井网布置2)煤层气增产技术与方法3)排水处理与环境评价8.矿井瓦斯抽放1)矿井瓦斯的来源与危害2)矿井瓦斯抽放技术(二)实验教学内容1.煤裂隙(割理)观测2.显微裂隙与大孔隙扫描电镜观测3.参观孔隙性、吸附性实验4.煤层气解吸实验数据处理六、学时分配表七、参考书1.钱凯,赵庆波,汪泽成,等.《煤层甲烷气勘探开发理论与实验测试技术》.北京:石油工业出版社,19962.叶建平,秦勇,林大杨.《中国煤层气资源》.北京:中国矿业大学出版社.1998 3.苏现波、陈江峰、孙俊民,等,《煤层气地质学与勘探开发》. 北京:科学出版社,20014.傅雪海,秦勇.《多相介质煤层气储层渗透率预测理论与方法》.徐州:中国矿业大学出版社,2003八、说明本课程应以教授为主,配合实验和作业,并运用幻灯片、图片、照片等多种手段,加强教学效果。