最新统计学第八章方差分析
- 格式:ppt
- 大小:509.00 KB
- 文档页数:59
第八章 方差分析习题答案一、单选1.D ;2.B ;3.A ;4.C ;5.C ;6.C ;7.C ;8.A ;9.B ;10.A二、多选1.ACE ;2.ABD ;3.BE ;4.AD ;5.BCE6.ABCD ;7.ABCDE ;8.ABCE ;9.ACD ;10.ABD三、计算分析题1、运用EXCEL 进行单因素方差分析,有:方差分析:单因素方差分析SUMMARY组 观测数 求和 平均 方差列 1 5 1.21 0.242 2.45E-05列 2 5 1.38 0.276 0.00226列 3 5 1.31 0.262 1.35E-05方差分析差异源 SS df MS F P-value F crit 组间 0.00292 2 0.00146 1.906005 0.191058 3.885294 组内 0.009192 12 0.000766总计 0.012112 14由于P 值=1.906005>05.0=α,不拒绝原假设,没有证据表明3个总体的均值之间有显著差异。
(或用F 值判断,有同样结论)2、运用EXCEL 进行单因素方差分析,有:方差分析:单因素方差分析SUMMARY组 观测数 求和 平均 方差列 1 5 222 44.4 28.3列 2 5 150 30 10列 3 5 213 42.6 15.8方差分析差异源 SS df MS F P-value F crit 组间 615.6 2 307.8 17.06839 0.00031 3.885294 组内 216.4 12 18.03333总计 832 14由于由于P 值=0.00031<05.0=α,拒绝原假设,表明3个总体的均值之间有显著差异。
(或用F 值判断,有同样结论)进一步用LSD 方法见教材P2063、(1)按行依次为:420、2、1.478(第一行);27、142.07(第二行);4256(第三行)。
(2)由于P 值=0.245946>05.0=α,不拒绝原假设,没有证据表明3种方法组装产品数量有显著差异。
11-第8章单因素方差分析仅供学习与交流,如有侵权请联系网站删除 谢谢140+第八章 单因素方差分析第一节 方差分析的基本问题一、方差分析要解决的问题t 检验法适用于样本平均数与总体平均数及两样本平均数间的差异显著性检验;而多个平均数间的差异显著性检验,必须用方差分析法。
1、检验过程繁琐一试验包含5个处理,采用t 检验法要进行25C 10=次两两平均数的差异显著性检验;若有k 个处理,则要作k (k-1)/2次类似的检验。
2、无统一的试验误差,误差估计的精确性和检验的灵敏性低 12X -X s如表8-1,试验有5个处理,每个处理重复6次,共有30个观测值。
进行t 检验时,每次只能利用两个处理共12个观测值估计试验误差,误差自由度为2(6-1)=10;若利用整个试验的30个观测值估计试验误差,显然估计的精确性高,且误差自由度为5(6-1)=25。
可见在用t检法进行检验时,由于估计误差的精确性低,误差自由度小,使检验的灵敏性降低,容易掩盖差异的显著性。
3、推断的可靠性低,检验的I型错误率大用t检验法进行多个处理平均数间的差异显著性检验,由于没有考虑相互比较的两个平均数的秩次问题,因而会增大犯I型错误的概率,降低推断的可靠性。
假设每一对检验接受零假设的概率都是1-α=0.95,而且这些检验都是相互独立的,那么10对检验都接受概率是(0.95)10=0.60,犯错误的概率α׳=1-0.60=0.40犯I型错误的概率明显增加。
由于上述原因,多个平均数的差异显著性检验不宜用t检验,须采用方差分析法。
二、方差分析的几个概念方差分析(analysis of variance)是由英国统计学家R.A.Fisher于1923年提出的。
这种方法是将a个处理的观测值作为一个整体看待,把观测值总变异的平方和及自由度分解为相应于不同变异来源的平方和及自由度,进而获得不同变异来源总体方差估计值;通过计算这些总体方差的估计值的适当比值,就能检验各样本所属总体平均数是否相等。
统计学(第四版)贾俊平 第八章 方差分析与实验设计 练习题答案8.10123411234:0:,,,0=0.01SPSS H H ααααααααα====至少有一个不等于用进行方差分析,表8.1-1填装量主体间效应的检验(单因素方差分析表)因变量: 填装量 源 III 型平方和df均方F Sig.偏 Eta 方非中心 参数观测到的幂b校正模型 .007a3 .002 10.098 .001 .669 30.295 .919 截距 295.7791 295.7791266416.430.000 1.000 1266416.4301.000 机器 .007 3 .002 10.098.001.66930.295.919误差 .004 15 .000总计 304.17119 校正的总计.01118a. R 方 = .669(调整 R 方 = .603)b. 使用 alpha 的计算结果 = .01由表8.1-1得:p=0.001<0.01,拒绝原假设,i 0α不全为,表明不同机器对装填量有显著影响。
8.201231123:0:,,0=0.05SPSS H H ααααααα===至少有一个不等于用进行方差分析,表8.2-1满意度评分主体间效应的检验(单因素方差分析表)因变量: 评分 源III 型平方和df 均方 F Sig.校正模型 29.610a2 14.805 11.756 .001 截距 975.156 1 975.156 774.324 .000 管理者 29.610 2 14.805 11.756.001误差 18.890 15 1.259总计 1061.000 18 校正的总计48.50017a. R 方 = .611(调整 R 方 = .559)由表8.2-1得:p=0.001<0.05,拒绝原假设,i 0α不全为,表明管理者水平不同会导致评分的显著差异。
8.301231123:0:,,0=0.05SPSS H H ααααααα===至少有一个不等于用进行方差分析,表8.3-1电池寿命主体间效应的检验(单因素方差分析表)因变量: 电池寿命 源III 型平方和df 均方 F Sig. 偏 Eta 方 非中心 参数 观测到的幂b校正模型 615.600a2 307.800 17.068 .000 .740 34.137 .997 截距 22815.000 1 22815.000 1265.157 .000 .991 1265.157 1.000 企业 615.600 2 307.800 17.068.000.74034.137.997误差 216.400 12 18.033总计 23647.000 15 校正的总计832.00014a. R 方 = .740(调整 R 方 = .697)b. 使用 alpha 的计算结果 = .05由表8.2-1得:p=0.001<0.05,拒绝原假设,i 0α不全为,表明3个企业生产的电池平均寿命之间存在显著差异。
统计学(第四版)贾俊平 第八章 方差分析与实验设计 练习题答案8.10123411234:0:,,,0=0.01SPSS H H ααααααααα====至少有一个不等于用进行方差分析,表8.1-1填装量主体间效应的检验(单因素方差分析表)因变量: 填装量 源 III 型平方和df均方F Sig.偏 Eta 方非中心 参数观测到的幂b校正模型 .007a3 .002 10.098 .001 .669 30.295 .919 截距 295.7791 295.7791266416.430.000 1.000 1266416.4301.000 机器 .007 3 .002 10.098.001.66930.295.919误差 .004 15 .000总计 304.17119 校正的总计.01118a. R 方 = .669(调整 R 方 = .603)b. 使用 alpha 的计算结果 = .01由表8.1-1得:p=0.001<0.01,拒绝原假设,i 0α不全为,表明不同机器对装填量有显著影响。
8.201231123:0:,,0=0.05SPSS H H ααααααα===至少有一个不等于用进行方差分析,表8.2-1满意度评分主体间效应的检验(单因素方差分析表)因变量: 评分 源III 型平方和df 均方 F Sig.校正模型 29.610a2 14.805 11.756 .001 截距 975.156 1 975.156 774.324 .000 管理者 29.610 2 14.805 11.756.001误差 18.890 15 1.259总计 1061.000 18 校正的总计48.50017a. R 方 = .611(调整 R 方 = .559)由表8.2-1得:p=0.001<0.05,拒绝原假设,i 0α不全为,表明管理者水平不同会导致评分的显著差异。
8.301231123:0:,,0=0.05SPSS H H ααααααα===至少有一个不等于用进行方差分析,表8.3-1电池寿命主体间效应的检验(单因素方差分析表)因变量: 电池寿命 源III 型平方和df 均方 F Sig. 偏 Eta 方 非中心 参数 观测到的幂b校正模型 615.600a2 307.800 17.068 .000 .740 34.137 .997 截距 22815.000 1 22815.000 1265.157 .000 .991 1265.157 1.000 企业 615.600 2 307.800 17.068.000.74034.137.997误差 216.400 12 18.033总计 23647.000 15 校正的总计832.00014a. R 方 = .740(调整 R 方 = .697)b. 使用 alpha 的计算结果 = .05由表8.2-1得:p=0.001<0.05,拒绝原假设,i 0α不全为,表明3个企业生产的电池平均寿命之间存在显著差异。