线性代数5-3 方阵相似于对角矩阵的条件
- 格式:ppt
- 大小:236.05 KB
- 文档页数:27
矩阵相似于对角矩阵的条件矩阵相似是线性代数中一个重要的概念,它描述了两个矩阵之间的一种关系,即它们有着相同的特征值和特征向量。
在实际应用中,矩阵相似性常常被用于矩阵的对角化,即将一个矩阵转化为对角矩阵的形式,以方便计算和分析。
本文将介绍矩阵相似于对角矩阵的条件及其应用。
一、矩阵相似的定义设A、B是两个n阶矩阵,若存在一个可逆矩阵P,使得P-1AP=B,则称A与B相似,记为AB。
其中,P-1表示P的逆矩阵。
矩阵相似是一种等价关系,即具有自反性、对称性和传递性。
具体而言,对于任意n阶矩阵A,有AA(自反性);若AB,则BA(对称性);若AB,BC,则AC(传递性)。
根据矩阵相似的定义,我们可以得出以下结论:- 相似矩阵具有相同的特征值和特征向量。
- 相似矩阵具有相同的秩、迹、行列式、特征多项式和伴随矩阵。
二、对角矩阵的定义对角矩阵是指只有对角线上有非零元素,其余元素均为零的矩阵。
例如:$$begin{bmatrix}a_1 & 0 & 00 & a_2 & 00 & 0 & a_3end{bmatrix}$$对角矩阵具有很多优良的性质,例如易于计算行列式、逆矩阵和幂等等。
三、相似于对角矩阵的条件一个矩阵A相似于对角矩阵的条件是存在一个可逆矩阵P,使得P-1AP=D,其中D为对角矩阵。
具体而言,相似于对角矩阵的条件有以下两个定理:定理1:设A为n阶矩阵,则A相似于对角矩阵的充分必要条件是A有n个线性无关的特征向量。
证明:若A相似于对角矩阵D,则A和D有相同的特征多项式和特征值。
设λ1,λ2,...,λk(k≤n)为A的所有不同特征值,对于每个特征值λi,都可以找到一个属于它的特征向量组成的集合Vi。
因此,A的所有特征向量的集合可以表示为V1∪V2∪...∪Vk,其中V1,V2,...,Vk两两之间线性无关。
由于A有n个特征向量,因此k=n,即A有n个线性无关的特征向量。
相似对角化的判别条件1.引言1.1 概述相似对角化是线性代数中一个重要的概念,它涉及到线性变换的可对角化性质。
在研究线性变换的性质和应用中,相似对角化是一个非常有用的工具。
具体而言,相似对角化是指对于一个给定的方阵A,是否存在一个可逆矩阵P,使得P逆矩阵乘以A再乘以P得到一个对角矩阵。
在这个概念中,我们可以从两个方面来理解。
首先,对于一个对角矩阵而言,它的主对角线上的元素是非常特殊的,它们代表着矩阵的特征值。
因此,相似对角化将矩阵的性质转化为了对角矩阵的性质,使得我们可以更加方便地研究和应用。
其次,相似对角化也涉及到线性变换的相似性。
在线性代数中,我们经常需要研究不同的线性变换之间的关系。
通过相似对角化,我们可以将一个线性变换转化为另一个具有更简单形式的线性变换,从而更方便地进行研究和比较。
在本文中,我们将重点讨论相似对角化的判别条件。
通过探究相似对角化的特点和性质,我们将提出一些判别条件,并给出相应的证明和解释。
同时,我们也将探讨相似对角化在实际问题中的应用和意义。
总之,相似对角化是线性代数中一个重要的概念,它涉及到矩阵的特征值和线性变换的相似性。
本文将从理论和应用两个方面对相似对角化进行相关研究,旨在深入理解相似对角化的判别条件,并探讨其在实际问题中的应用和意义。
1.2文章结构1.2 文章结构本文将分为三个主要部分,即引言、正文和结论。
引言部分将对相似对角化的概念进行概述,并介绍文章的结构和目的。
正文部分将详细探讨相似对角化的定义和背景知识。
首先,我们会给出相似对角化的具体定义,并解释其意义和应用。
随后,我们将介绍相似对角化的判别条件1和判别条件2。
这两个判别条件是判断矩阵是否相似对角化的重要方法,并具有一定的理论和实际意义。
通过对这些判别条件的研究,我们可以更好地理解相似对角化的特性和性质。
在结论部分,我们将对相似对角化的判别条件进行总结,并讨论其应用和意义。
同时,我们还会探讨相似对角化在其他领域的可能应用,并展望未来的研究方向。
第六章 矩阵的相似变换本章主要讨论方阵的特征值和特征向量、方阵的相似变换和对角化等问题.第一节 方阵的特征值和特征向量一、特征值与特征向量定义1 设A 是n 阶方阵,如果存在数λ和n 维非零向量X 使关系式λ=AX X (6.1)成立,则称数λ为方阵A 的特征值;非零列向量X 称为A 对应于特征值λ的特征向量.将式(6.1)改写成()λ−=A E X 0, (6.2) 将(6.2)看成关于X 的齐次线性方程组,它有非零解当且仅当其系数行列式满足 0λ−=A E , (6.3)即1112121222120λλλ−−=−n nn n nn a a a a a a a a a , (6.4)这是以λ为未知数的一元n 次方程,称为A 的特征方程,其左端λ−A E 是λ的n 次多项式,记作()λf ,称为A 的特征多项式,特征方程的根就是A 的特征值.根据代数基本定理,在复数范围内,n 阶方阵A 有n 个特征值(重根按重数计算),记作12,,,λλλ n .求出特征值λi 后,将λi 代入齐次线性方程组(6.2)中,求解方程组()λ−=i A E X 0 (6.5) 的所有非零解向量,就是属于λi 的特征向量。
对不同的特征值逐个计算,可求得属于各特征值的全部特征向量.若非零向量X 是方阵A 的特征向量,则由(6.1)式可知,对任意实数0k ≠,有()()k k λ=A X X ,(6.6) 这表明k X 也是方阵A 的特征向量,因此属于同一特征值的特征向量有无穷多个;反之,不同特征值对应的特征向量必不相同,即一个特征向量只能属于一个特征值(证明留给读者作为练习).由齐次线性方程组解的性质容易证得如下定理.定理1 设λ是方阵A 的特征值,12,,,s p p p 是属于λ的特征向量,则12,,,s p p p 的任意非零线性组合仍是属于λ的特征向量.例1 求141130002−−=A 的特征值和特征向量. 解 A 的特征多项式2141()130(2)(1)002λλλλλλλ−−−=−=−=−−−f A E ,所以A 的特征值为12λ=,231λλ==. 对于12λ=,解齐次方程组(2)−=A E X 0.由3411012110011000000−−−=→−A E ,得基础解系 1111−=p ,所以111(0)≠k k p 是对应于12λ=的全部特征向量.对于231λλ==,解齐次方程组()−=A E X 0.由 241120120001001000−−−=→A E ,得基础解系 2210−=p ,所以222(0)≠k k p 是对应于231λλ==的全部特征向量. 例2 求204121103−−=A 的特征值和特征向量.解 A 的特征多项式2204()121(1)(2)13λλλλλλλ−−−=−=−=−+−−f A E ,所以A 的特征值为11λ=−,232λλ==. 对于11λ=−,解齐次方程组()+=A E X 0.由104104131011104000−−+=→−A E ,得基础解系 1411−=p ,所以111(0)≠k k p 是对应于11λ=−的全部特征向量.对于232λλ==,解齐次方程组(2)−=A E X 0.由 4041012101000101000−−−=→A E ,得基础解系 2010=p ,3101− = p ,所以2233+k k p p (2k ,3k 不同时为0)是对应于232λλ==的全部特征向量.二、特征值和特征向量的性质定理2* 设12,,,λλλ n 是n 阶方阵()=ij a A 的n 个特征值,则有(1)11n n i ii i i a λ==∑∑; (2)1ni i λ==∏A .其中1niii a=∑是A 的主对角元之和,称为方阵A 的迹,记作tr()A .证明 见附录六例3 设7414744y x −= −−A 的特征值为123λλ==,312λ=,求,x y 的值. 解 由定理2可得123123tr()7718331212108x x y λλλλλλ=++=++=+− A A 解之得4,1x y ==−.定理3 设λ是方阵A 的特征值,p 是A 的属于λ的任一特征向量,则有: (1)k R ∀∈,k λ是k A 的特征值,p 是k A 的属于k λ的特征向量;(2)对任意非负整数k ,k λ是k A 的特征值,p 是k A 的属于k λ的特征向量; (3)若()ϕA 是A 的m (m 为任意非负整数)次多项式,即01()m m a a a ϕ=+++A E A A ,则()ϕλ是()ϕA 的特征值,p 是()ϕA 的属于()ϕλ的特征向量;(4)若A 可逆,则0λ≠,且1λ是1−A 的特征值,p 是1−A 的属于1λ的特征向量;(5)若A 可逆,则λA是*A 的特征值,p 是*A 的属于λA的特征向量;(6)λ也是T A 的特征值.证明 (1)由λ=Ap p ,有k k λ=Ap p 成立。
主讲人:同济大学殷俊锋相似矩阵及可对角化是线性代数中的非常重要的知识点包含矩阵可相似对角化的充分必要条件、相似对角化的方法,实对称矩阵的特征值、用正交变换化实对称矩阵为对角矩阵等基本概念.广泛用于今后惯性定理、用正交变换化二次型为标准型等高级知识.一、知识要点1、定义:设A和B是两个n阶方阵,如果存在可逆矩阵P满足B=P-1AP,则称矩阵A和B是相似的,记作A~B. 矩阵的相似关系是一种等价关系,具有自反性、对称性和传递性.设A~B,则有(1)矩阵A和B具有相同的行列式;(2)矩阵A和B具有相同的特征多项式、特征方程以及相同的特征值;(3)A T~B T,A-1~B-1(可逆时),一般地,若φ(t)=a0+a1t+a2t2+…+a m t m,则有φ(A) ~φ(B).2、矩阵可相似对角化的充分必要条件若矩阵A和对角矩阵Λ是相似的,则称矩阵A可对角化.定理设A是一个n阶方阵,则A 可对角化的充分必要条件是:A有n 个线性无关的特征向量.由于不同特征值对应的特征向量一定是线性无关的,因此,当矩阵A的特征值互异时,必可相似对角化.定理设A是一个n 阶方阵,则A 可对角化的充分必要条件是:对于A 的任意一个k重特征值λ,矩阵A 的属于特征值λ的线性无关的特征向量的个数为k,即r(A-λ E) =n-k.将矩阵相似对角化的方法:设n 阶方阵有n 个线性无关的特征向量ξ1,ξ2,…,ξn ,对应的特征值分别为λ1,λ 2,…,λ n ,即A ξ1=λ1 ξ1 (i =1,2,…,n),则有若记(可逆),则.需要注意的是:①相似矩阵P 不唯一;②矩阵P 的列与对角矩阵Λ的列的对应关系.()()()()121212112212,,,,,,,,,,,,λλξξξξξξλξλξλξξξξλ⎛⎫ ⎪ ⎪=== ⎪ ⎪⎝⎭n n n n n n A A A A ()12,,,ξξξ=n P 121λλλ-⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭n P AP3、实对称矩阵的性质(1)特征值全为实数;(2)不同特征值对应的特征向量必正交;(3)A必可正交相似于一个对角阵,即存在正交矩阵P,使得P-1AP=P T AP=Λ,其中Λ是以A的特征值为对角元的对角矩阵.4、将n阶对称实方阵A正交相似对角化的方法(1)求出矩阵A 的互异特征值λ1,λ 2,…,λ n,其重数分别为k1,k2,…,k n (k1+k2+…+k n =n);(2)对每个特征值λi,求齐次线性方程组(A-λi E) x=0 的基础解系,得矩阵A 的属于特征值λi的k i个线性无关的特征向量,将其正交化,单位化,得k i 个两两正交的单位特征向量,一共可以得到n个两两正交的单位特征向量;(3)将(2)中得到的n 个两两正交的单位特征向量按列构成正交矩阵P,则有P-1AP=P T AP=Λ,注意Λ中的对角元的排列次序与矩阵P中的列向量的排列次序相对应.特别地,如果矩阵A的特征值为λ1,λ 2,…,λ n互异,则只需要将对应的特征向量单位化即可(特征向量已经正交).二、教学要求1、理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件;2、掌握将矩阵化为相似对角矩阵的方法;三、例题精讲例1、矩阵与相似的充分必要条件是解:由于已知矩阵都是对称矩阵,且1111⎛⎫ ⎪ ⎪ ⎪⎝⎭a a b a a 20000000⎛⎫ ⎪ ⎪ ⎪⎝⎭b ()()21111022111111λλλλλλλλλλλ--⎛⎫⎪⎡⎤-=-=-=----⎣⎦ ⎪⎪--⎝⎭a a ab a E a b a a b a b a a a a 故,矩阵相似两个矩阵具有相同的特征值,的根为0,2,b ,⇔⇔⇔()()2220λλλ⎡⎤----=⎣⎦b a 0=a例2、设矩阵可对角化,则a,b 满足什么条件?解:先求特征值0011100⎛⎫ ⎪= ⎪ ⎪⎝⎭A a b ()()20111110λλλλλλ--=-=--+-A E a b 故矩阵A 的特征值为:1(2重),-1,所以,矩阵A 可对角化属于特征值1的线性无关的特征向量的个数为2()1⇔-=r A E ⇔另一方面,101101()000101000--⎛⎫⎛⎫ ⎪ ⎪-=→+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A E a b a b 所以,a+b=0.例3、设为3阶方阵,且,求.解:由题意,可知矩阵A 20,20,30+=+=-=A E A E A E A 2001~002003A -⎛⎫ ⎪⎪- ⎪ ⎪⎝⎭从而()123 3.2⎛⎫=--= ⎪⎝⎭A例4、求可逆矩阵P 将方阵对角化.解:先求特征值200121143⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A 当时,()()220012121143λλλλλλ--=--=--+--A E 故矩阵A 的特征值为:2(2重),-1,2λ=0002141,141⎛⎫ ⎪-=- ⎪ ⎪-⎝⎭A E 12411,0;01ξξ-⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭解得,当时,1λ=-300111,144⎛⎫ ⎪+=- ⎪ ⎪-⎝⎭A E 301,1ξ⎛⎫⎪= ⎪ ⎪⎝⎭解得,所以,所求矩阵410101,011-⎛⎫⎪= ⎪ ⎪⎝⎭P 1200020.001-⎛⎫⎪= ⎪ ⎪-⎝⎭P AP 使得例5、设,求.解:先求特征值111111111-⎛⎫⎪=-- ⎪ ⎪--⎝⎭A ()21111113111λλλλλλ---=---=-+---A E 10A 当时,0λ=1110111,111-⎛⎫⎪-=-- ⎪ ⎪--⎝⎭A E 12111,0;01ξξ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭解得,当时,3λ=-2113121,112⎛⎫⎪+=- ⎪ ⎪-⎝⎭A E 311;1ξ-⎛⎫ ⎪= ⎪ ⎪⎝⎭解得,111101,011-⎛⎫ ⎪= ⎪ ⎪⎝⎭P 1000000.003-⎛⎫ ⎪= ⎪⎪-⎝⎭A P P 所以,找到矩阵使得10101110110000000031110001111010001010110030111113111111--⎛⎫ ⎪= ⎪ ⎪-⎝⎭--⎛⎫⎛⎫⎛⎫ ⎪⎪⎪= ⎪⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭--⎛⎫ ⎪=-⎪ ⎪-⎝⎭A P P 从而例6、设矩阵问为何值时,矩阵A 可对角化?解:矩阵A 的特征多项式为:102014.522⎛⎫ ⎪= ⎪ ⎪+--⎝⎭A a a a 故特征值为,下面分三个情形.a ()[]1021020142110(1)(2)(21)522522λλλλλλλλλλλ---=-=---=-----+---+---A E a a a a a a a 1,2,21-a情形1 当,即,时,矩阵A 有三个不同的特征值,此时A 可对角化;情形2 当,即,时,矩阵A 的特征值为1和2(二重),此时211,2-≠a 31,2≠a 矩阵A 的属于特征值2的线性无关的特征向量只有一个,故A 不可对角化;212-=a 32=a ()1022014,(2)2,137122⎛⎫⎪-⎪-=--= ⎪ ⎪-⎪⎝⎭A E r A E情形3 当,即,时,矩阵A 的特征值为1(二重)和2,此时矩阵A 的属于特征值1的线性无关的特征向量只有一个,故A 不可对角化;211-=a 1=a ()002004,()2,631A E r A E ⎛⎫ ⎪-=-= ⎪ ⎪-⎝⎭综上,当时,矩阵A 可对角化.31,2≠a例7、设A 为3阶矩阵,是3个线性无关的三维列向量,且满足解:(1)由已知条件得:所以矩阵123,,ααα1123223323,2,23.αααααααααα=++=+=+A A A (1)求矩阵B , 使得;(2)求矩阵A 的特征值;(3)求可逆矩阵P 使得P -1AP 为对角阵.()()123123,,,,αααααα=A B ()()123123100,,,,122,113αααααα⎛⎫ ⎪= ⎪ ⎪⎝⎭A 100122.113⎛⎫ ⎪= ⎪ ⎪⎝⎭B(2)记,因是3个线性无关的三维列向量,故矩阵可逆. 由(1)知:即B 与A 相似,B 与A 具有相同的特征值. 另一方面,123,,ααα()1123,,ααα=P 1P 11111,,-==AP PB B P AP ()()210012214,113λλλλλλ--=-=----B E 故矩阵B 的特征值为1,1,4,所以矩阵A 的特征值也为1,1,4;当时,相应的特征向量为11λ=()000112112000,112000⎛⎫⎛⎫ ⎪ ⎪-=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭B E ()()121,1,0,2,0,1,ξξ=-=-T T 当时,相应的特征向量为24λ=()3001004122011,111000-⎛⎫⎛⎫ ⎪ ⎪-=-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭B E ()30,1,1,ξ=T(3)先将矩阵B 对角化,()2123,,,ξξξ=P 令则有122100010,004-⎛⎫⎪= ⎪ ⎪⎝⎭P BP 结合上述条件,则有112112100010,004--⎛⎫ ⎪= ⎪ ⎪⎝⎭P P APP 取使得P -1AP 为对角阵,其中12=P PP ()()12123121323120,,101,2,,011ααααααααα⎛⎫ ⎪==-=--+ ⎪ ⎪-⎝⎭P PP谢谢!。
单选题其他1.λ1,λ2都是n阶矩阵A的特征值,λ1≠λ2,且x1与x2分别是对应于λ1与λ2的特征向量,当()时,x=k1x1+k2 x2 必是A的特征向量。
A、 k1=0且k2=0B、 k1≠0且k2≠0C、 k1·k2=0D、 k1≠0而k2=0【正确答案】:D【答案解析】:A的特征向量不能是零向量,所以k1、k2不同时为零,所以A、C不对;x1、x2是两个不同的方程组的解,两个方程的两个非零向量解之和不再是其中一个方程的解,所以A的特征向量不选B。
选D是因为k2=0,k1≠0,x= k1 x1仍然是A的特征向量。
2. 0,-1,则f(A)的特征值为()。
A、 3,1,1B、 2,-1,-2C、 3,1,-1D、 3,0,1【正确答案】:A【答案解析】:设A的特征值是λ,则f(A)的特征值就是f(λ),把1,0,-1依次代入,得到3,1,1。
3.()。
A、 1/12B、 1/7C、 7D、 12【正确答案】:A【答案解析】:A1.A为三阶矩阵,0,-1,1为它的三个特征值。
其对应的特征向量为。
设,则下列等式错误的是()。
A、B、C、D、 Ap1=0【正确答案】:C【答案解析】:B1.二次型f(x,y)=x2-6xy+y2对应的对称矩阵为().A、B、C、D、【正确答案】:B【答案解析】:f(x,y)=x2-6xy+y2对应的矩阵为,因此可知选择B,参见教材P163.(2014年7月真题)D1.对称矩阵是().A、负定矩阵B、正定矩阵C、半正定矩阵D、不定矩阵【正确答案】:B【答案解析】:本题考查实二次型的分类.用顺序主子式方法判定:2>0,,所以A正定,故选择B. 参见教材P172. (2013年1月真题)E1.二次型f(x1,x2,x3)=x12+2x22+x32-2x1x2+4x1x3-2x2x3的矩阵是().A、B、C、D、【正确答案】:C【答案解析】:本题考查二次型的矩阵,因此可知答案为C,参见教材P163.(2014年4月真题)2.二次型的矩阵为()。
相似对角化的判定条件
相似对角化是线性代数中的一个重要概念,指的是对于一个方阵,存在两个可逆矩阵,使得将这个方阵分别左右乘以这两个可逆矩阵,可以得到两个对角阵,而这两个对角阵是相似的。
判定矩阵是否可以相似对角化有以下条件:
1. 相同的特征值:如果一个矩阵可以相似对角化,那么这个矩
阵的特征值应该与其它所有相似矩阵的特征值相同。
2. 线性无关的特征向量:如果一个矩阵可以相似对角化,那么
它应该有n个线性无关的特征向量,其中n为该矩阵的阶数。
3. 代数重数等于几何重数:如果矩阵的某个特征值的代数重数
等于它的几何重数,那么这个矩阵就可以相似对角化。
4. 同阶且相似矩阵的数量等于维数:如果一个矩阵可以相似对
角化,那么和它相似的矩阵的数量应该等于它的维数。
上述条件都是矩阵可相似对角化的充分条件,也就是只有同时满足这些条件时,矩阵才可以相似对角化。
在实际应用中,需要根据具体情况选择合适的条件来判断是否可以相似对角化,以便进行相应的线性代数运算。