线性代数总复习及典型例题
- 格式:pdf
- 大小:1.24 MB
- 文档页数:61
一21. 设 α1, α2, α3 线性无关,证明β112,β2α2α3 , β3 α3 α1也线性无关。
1 1 1 022.计算行列式11 0 1 。
1 0 1 10 1 1 123. 1 1 0 1 2利用逆矩阵解矩阵方程0 1 1 X -1 1 。
1 0 1 1 -124.1 a 1 2已知A 0 1 a 2 ,求 a 的值,使得 r ( A)2。
1 0 1 225. 求向量组 α11111 , α2 1 , α3 2 , α4 0 的秩和一个极大线性无关组,并111把其余向量用此极大线性无关组线性表示。
26. 求矩阵 A =21的特征值与特征向量。
1 2x 1 4 x 2 3x 3 027.讨论当 取何值时, 齐次线性方程组2 x 1 3x 2 x3 0 有非零解, 并在有非零解时求其x 1x 2 2 x 3通解。
参考答案 : 21. 如果k1 1k 22k 33O ,k 1 ( 12)k 2(23)k 3(31) O ,于是(k 1 k 3 ) 1 (k 1k 2 ) 2 (k 2 k 3 ) 3 O ,由 1 , 2 ,k 1k 3 0, 3线性无关知k 1 k 2 0,k 2k 30,此方程组只有零解 k 1 0, k 2 0, k 30 ,因此 1, 2,3 线性无关。
1 1 1 01 1 1 01 10 1 1 1 0 11 10 10 0 1 122. = =101=10 1=-01 131011 0 1 0 10 11 10 1111 110 3 00 31 1 0 11 -1 1123.0 1 1 1 1 -1 故1 0 12 -11 11 1 0 12 1-1 1 1 23 01X0 1 1 -1 1 1 11-1-11 1 -1 41 0 11 -12-1 111 -12 -1 -21 a 1 20 a0 0 1 0 1 224.A01 a2 0 1 a 2 0 1 a 2 1 01 2 1 01 20 a 0 0当 a=0 时, r (A) 2。
第一章 行列式复习要点:1. 会计算逆序数,余子式,代数余子式2. 熟练掌握行列式的性质,并能利用性质计算行列式3. 掌握克莱姆法则练习题:1. 排列1 6 5 3 4 2的逆序数是( ).A. 8 B .9 C .7 D . 62122.431235-的代数余子式12A 是( ).A 2143-- B2143- C 4125--D4125-3. 排列32514的逆序数是( ).A. 3B. 4C. 5D. 64.关于行列式,下列命题错误的是( ).A. 行列式第一行乘以2,同时第二列除以2,行列式的值不变 B .互换行列式的第一行和第三行,行列式的值不变 C .互换行列式的任意两列,行列式仅仅改变符号 D . 行列式可以按任意一行展开 5. 关于行列式,下列命题正确的是( ).A. 任何一个行列式都与它的转置行列式相等B .互换行列式的任意两行所得到的行列式一定与原行列式相等C .如果行列式有一行的所有元素都是1,则这个行列式等于零D . 以上命题都不对6. 关于行列式,下列正确的是( ).A. 如果行列式有一行的所有元素都是1,则这个行列式等于零.B. 互换行列式的任意两行所得到的行列式一定与原行列式相等.C. 行列式中有两行对应成比例,则此行列式为零.D. 行列式与它的转置行列式互为相反数.7. 下列命题错误的是( ).A. 如果线性方程组的系数行列式不等于零,则该方程组有唯一解 B .如果线性方程组的系数行列式不等于零,则该方程组无解 C .如果齐次线性方程组的系数行列式等于零,则该方程组有非零解 D .如果齐次线性方程组的系数行列式不等于零,则该方程组只有零解8212431235-的余子式32M =————,代数余子式32A =—————— 9. 已知k341k 000k 1-=,则k =__________.10. 若52k 74356=,则k =__________.11. 计算行列式|12345006|=_________ 12. 计算行列式|1111123413610141020| 13.计算行列式53-120172520-23100-4-14002350D =14. 计算行列式1234248737124088D =15.计算行列式x yyxx x y y yx x y+++第二章 矩阵复习要点:1. 掌握矩阵的线性运算,矩阵乘法运算律,转置矩阵的运算律,2. 掌握矩阵的初等变换3. 掌握方阵行列式的性质,转置矩阵的性质,逆矩阵的性质4. 会求逆矩阵.了解待定系数法和伴随矩阵法,掌握用初等变换求解逆矩阵相关问题.能够证明矩阵的可逆性.5. 会用初等行变换求矩阵的秩6. 会求解矩阵方程练习题:1. 设A ,B 均为n 阶可逆阵,则下列公式成立的是( ). A T T T B A AB =)( B T T T B A B A +=+)( C 111)(---=B A AB D 111)(---+=+B A B A2. A,B 均为n 阶方阵,若要22(A B)(A B)A B +-=-不成立,需满足( ).A. A=E B .B=O C .A=B D . AB ≠BA 3. 若方阵2A A,=A 不是单位方阵,则( ).A. A 0= B . A 0≠ C .A O = D .A O ≠4.若矩阵111A 121231⎛⎫ ⎪= ⎪ ⎪λ+⎝⎭的秩为2,则λ=( ). A. 0 B . 2 C .1 D . -15.矩阵⎪⎪⎭⎫⎝⎛=32015431A 的秩是( ) 6. 110201211344⎛⎫⎪-- ⎪ ⎪-⎝⎭ 的秩是( )7. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=321212113A ,⎪⎪⎪⎭⎫ ⎝⎛---=111012111B 求AB 和BA8. 设矩阵,⎪⎪⎭⎫ ⎝⎛=1021A 求32A A ,. 9. 设矩阵521320A ,B 341201--⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭,求T T T(1)AB ;(2)B A;(3)A A.10.⎪⎪⎪⎭⎫⎝⎛--=210111121A ,求逆矩阵11. 223110121⎛⎫ ⎪- ⎪ ⎪-⎝⎭.,求逆矩阵 12. 求矩阵X , 使B AX =, 其中.341352,343122321⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=B A13. 求解矩阵方程,X A AX += 其中.010312022⎪⎪⎪⎭⎫⎝⎛=A.B AX X ,B ,A . 132231 11312221414=⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫⎝⎛--=使求设15. 已知n 阶方阵A 满足矩阵方程2A 3A 2E O --=,其中A 给定,E 为n 阶单位矩阵,证明A 可逆,并求1A -. 16. 设A 、B 为n 阶矩阵,2A B AB E --=,2A A =,其中E 为n 阶单位矩阵.证明:A B -为可逆矩阵,并求()1A B --.17. 设方阵A 满足22A A E O --=,证明A 及2A E +都可逆.第三章 线性方程组复习要点:1. 熟练掌握方程组解无解/有解/有唯一解/有无穷多解的充要条件2. 会求向量组的秩;能够验证向量组的线性相关性;会求向量组的极大线性无关组,并可以将其他向量用极大无关组线性表示.3. 熟练掌握基础解系的求解3. 会求解齐次线性方程组的通解,会求非齐次线性方程组的通解和特解练习题:1. 若线性方程组Ax b =的增广矩阵为B 23124010012⎛⎫ ⎪→λλ ⎪ ⎪λ-λ-⎝⎭,当常数λ=( )时,此线性方程组有唯一解.A. -1 B .0 C .1 D . 22. 已知n 元线性方程组b Ax =,其增广矩阵为B ,当( )时,线性方程组有解.A. ()n B r =B. ()n B r ≠C. ()()B r A r =D. ()()B r A r ≠3. 若线性方程组Ax b =的增广矩阵为B 23124010012⎛⎫ ⎪→λλ ⎪ ⎪λ-λ-⎝⎭,当常数λ=( )时,此线性方程组有唯一解.A. -1 B .0 C .1 D . 24. 设A 为m×n 矩阵,齐次线性方程组Ax =0仅有零解的充分必要条件是 系数矩阵的秩r (A )( )A. 小于mB. 小于nC. 等于mD. 等于n5. 已知向量组1,,m αα线性相关,则( ).A 、该向量组的任何部分组必线性相关.B 、该向量组的任何部分组必线性无关.C 、该向量组的秩小于m .D 、该向量组的最大线性无关组是唯一的.6. 如果齐次线性方程组有非零解,则它的系数行列式D _____0. ( = 或 ≠)7. 已知线性方程组Ax b =有解,若系数矩阵A 的秩r(A)=4,则增广矩阵B 的r(B)=__________.8. 若线性方程组Ax b =的增广矩阵为B 312400120012⎛⎫⎪→ ⎪ ⎪λ⎝⎭,则当常数λ=__________时,此线性方程组有无穷多解.9. 若线性方程组Ax b =的增广矩阵为B 300200a 11⎛⎫→ ⎪+⎝⎭,则当常数a =__________时,此线性方程组无解.10.λ取何值时,非齐次线性方程组 1231232123+1++x x x x x x x x x λλλλλ⎧+=⎪+=⎨⎪+=⎩(1)有唯一解(2)无解(3)有无穷多解? 取何值时,线性方程组当 11..λ ()()()()⎪⎩⎪⎨⎧=++++=+-+=+++3313123321321321x λλx x λλx x λλx λx x x λ 有唯一解、无解、无穷多解?当方程组有无穷多解时求出它的解.12.求下列方程组的通解.236222323754325432154321⎪⎩⎪⎨⎧=+++-=-+++=++++x x x x x x x x x x x x x x13. 判断下列向量组的线性相关性:(1)1234=-1,3,2,5=3-1,0-4=2,2,2,2=1,5,4,6αααα(),(,,),(),()(2)1234=1,1,3,1=10,00=2,2,7,-1=3,-1,2,4αααα(),(,,),(),() 14. 已知向量组()()()()T4T3T2T13 2 10 0 10 1 11 1 1α-====,,α,,,α,,,α,,,,求向量组的一个极大无关组,并将其余向量用此极大无关组线性表示.15. 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛---140113*********12211的列向量组()54321α,α,α,α,α的一个极大无关组,并把不属于极大无关组的列向量用极大无关组线性表示.16. 试证若向量组γβα,,线性无关, 则向量组,βα+,γβ+αγ+亦线性无关. 17. 已知向量321ααα,,线性无关,证明向量11232βααα=+-,2123312βαααβαα=--=+,也是线性无关的。
2024年考研数学一专题线性代数历年题目归纳线性代数是考研数学一科目中的重要内容之一,涉及到矩阵、向量、线性方程组等多个概念和方法。
了解历年考研数学一专题线性代数的题目,可以帮助考生更好地掌握该专题的重点和难点,提高解题能力。
本文将对2024年考研数学一专题线性代数历年题目进行归纳,以供考生参考。
1. 矩阵运算题矩阵的加法、减法、乘法是线性代数的基本内容,考研中常涉及到矩阵的运算性质和运算规律。
如下是一道历年考研数学一专题线性代数中的矩阵运算题目:【例题】已知矩阵A=(a_{ij})_{m×n},矩阵B=(b_{ij})_{n×p},矩阵C=(c_{ij})_{p×k},试证明:(A×B)×C=A×(B×C)。
解析:首先我们需要明确矩阵的乘法运算满足结合律。
对于(A×B)×C,先计算矩阵A和矩阵B的乘积,得到(m×p)的矩阵D。
然后将矩阵D与矩阵C相乘,得到(m×k)的矩阵E,即(A×B)×C=E。
同样地,对于A×(B×C),先计算矩阵B和矩阵C的乘积,得到(n×k)的矩阵F。
然后将矩阵A与矩阵F相乘,得到(m×k)的矩阵G,即A×(B×C)=G。
因此,(A×B)×C=E=A×(B×C)=G,即(A×B)×C=A×(B×C)。
2. 矩阵的秩题矩阵的秩是指矩阵中非零行的最大线性无关组中所含向量的个数。
在考研数学一专题线性代数中,关于矩阵的秩有很多题目,如下所示:【例题】已知矩阵A=(a_{ij})_{m×n},矩阵B=(b_{ij})_{n×p},且秩(A)=r,秩(B)=s。
试证明:1) 秩(AB)≤min{r,s};2) 如果r=s,且r=min{m,n,p},则秩(AB)=r。
大一线性代数知识点例题1. 矩阵运算给定矩阵 A = [2 1; 3 4], B = [5 6; 7 8],计算以下运算:a) 2A + 5Bb) ABc) BA2. 矩阵消元给定矩阵 C = [1 2 3; 4 5 6; 7 8 9],通过列消元将其转化为矩阵 RREF。
3. 线性方程组求解给定线性方程组:2x + 3y - z = 14x + 2y + z = -2x - y + 2z = 3求解上述线性方程组的解集。
4. 向量空间以下向量组是否为向量空间?如果是,证明其为向量空间;如果不是,解释原因。
a) V = {(x, y) | x + y = 1},其中 x 和 y 是实数。
b) V = {(x, y) | x^2 + y^2 = 1},其中 x 和 y 是实数。
5. 线性变换给定线性变换 T:R^2 → R^3,使得 T((1, 0)) = (2, 1, 3) 和T((0, 1)) = (-1, 2, 0)。
a) 计算 T((3, 2))。
b) 判断 T 是否为一一映射。
6. 特征值和特征向量给定矩阵 D = [4 1; 2 3],求其特征值和特征向量。
7. 内积和正交性给定向量 A = (3, -1, 2) 和向量 B = (-2, 5, 1)。
a) 计算 A 和 B 的内积。
b) 判断 A 和 B 是否正交。
c) 如果 A 和 B 是正交的,计算它们的夹角。
8. 最小二乘法给定数据点 (1, 2), (2, 3), (3, 4),求使拟合的直线 y = ax + b 与这些数据点的距离最小化的最佳拟合直线。
以上是大一线性代数的一些知识点例题,通过这些例题的练习,可以加深对线性代数的理解,提升解题技巧。
希望能够为你的学习提供一些帮助。
线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。
(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。
推论:若行列式中某两行(列)对应元素相等,则行列式等于零。
③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。
推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。
④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。
克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a →②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。
化为三角形行列式 ⑤上(下)三角形行列式:行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵n (零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) ---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A TT =)( TTTB A B A +=+)( TTkA kA =)( TTTA B AB =)((反序定理) 方幂:2121k k k kA AA +=2121)(k k k k A A +=对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 注:把分出来的小块矩阵看成是元素N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的,|A|=0、伴随矩阵)2.、非零k 乘某一行(列)3、将某行(列)的K 初等变换不改变矩阵的可逆性 初等矩阵都可逆倍乘阵 倍加阵) ⎪⎪⎭⎫ ⎝⎛=O OO I D rr矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n n ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。
线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和nnn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ〔奇偶〕排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。
〔转置行列式〕TD D =②行列式中*两行〔列〕互换,行列式变号。
推论:假设行列式中*两行〔列〕对应元素相等,则行列式等于零。
③常数k 乘以行列式的*一行〔列〕,等于k 乘以此行列式。
推论:假设行列式中两行〔列〕成比例,则行列式值为零;推论:行列式中*一行〔列〕元素全为零,行列式为零。
④行列式具有分行〔列〕可加性⑤将行列式*一行〔列〕的k 倍加到另一行〔列〕上,值不变行列式依行〔列〕展开:余子式、代数余子式ij M ijji ij M A +-=)1( 定理:行列式中*一行的元素与另一行元素对应余子式乘积之和为零。
克莱姆法则:非齐次线性方程组 :当系数行列式时,有唯一解:0≠D )21(n j DD x j j ⋯⋯==、 齐次线性方程组 :当系数行列式时,则只有零解01≠=D 逆否:假设方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a →②对称行列式:jiij a a =③反对称行列式:奇数阶的反对称行列式值为零ji ij a a -=④三线性行列式: 方法:用把化为零,。
化为三角形行列式333122211312110a a a a a a a 221a k 21a ⑤上〔下〕三角形行列式:行列式运算常用方法〔主要〕行列式定义法〔二三阶或零元素多的〕化零法〔比例〕化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:〔零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵)n m A * 矩阵的运算:加法〔同型矩阵〕---------交换、结合律数乘---------分配、结合律n m ij ka kA *)(= 乘法注意什么时候有意义nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑== 一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0转置A A TT =)(TTTBA B A +=+)((反序定理)T T kA kA =)(T T T A B AB =)(方幂:2121k k k kA AA += 几种特殊的矩阵:对角矩阵:假设AB 都是N 阶对角阵,k 是数,则kA 、A+B 、AB 都是n 阶对角阵数量矩阵:相当于一个数〔假设……〕 单位矩阵、上〔下〕三角形矩阵〔假设……〕对称矩阵反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,假设存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的,(非奇异矩阵、奇异矩阵|A|=0、伴随矩阵)B A =-1 初等变换1、交换两行〔列〕2.、非零k 乘*一行〔列〕3、将*行〔列〕的K 倍加到另一行〔列〕初等变换不改变矩阵的可逆性 初等矩阵都可逆 初等矩阵:单位矩阵经过一次初等变换得到的〔对换阵 倍乘阵 倍加阵〕等价标准形矩阵⎪⎪⎭⎫ ⎝⎛=O OO I D rr 矩阵的秩r(A):满秩矩阵 降秩矩阵 假设A 可逆,则满秩假设A 是非奇异矩阵,则r 〔AB 〕=r 〔B 〕初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵,行列式n ij n ij a k ka )()(=nijn nij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④假设A 可逆,则其逆矩阵是唯一的。
一、1、=-601504321。
2、设A 为4阶矩阵,且==|2|,31||A A ,=|21|T A 。
3、,,5443⨯⨯B A 则AB 是 行 列矩阵。
4、n 维空间的一组基含有 个线性无关的向量。
5、已知一个非齐次线性方程组的增广矩阵经初等变换化为⎥⎥⎥⎥⎦⎤--⎢⎢⎢⎢⎣⎡+--1211000003000102002111λλλλλ,则当λ为 时,方程组有无穷多解,其导出方程组的基础解系含 个向量,当λ为 时,方程组无解。
6、()⎪⎪⎪⎭⎫ ⎝⎛--312131= 。
7、若矩阵A 满足,1-=A A T 则矩阵A 一定是 矩阵。
8、n 阶行列式展开后,一共有 项。
9、已知,)(33⨯=ij a A ,)(*33⨯=ij A A ij A 为ij a 的代数余子式,且,1)(=A r 则=*)(A r 。
10、矩阵A 的特征方程是 。
11、设A 为3阶矩阵,且==-|2|,2||1A A ,=*||A 。
12、已知行列式,3333231232221131211=a a a a a a a a a 则=---333132312321222113111211333a a a a a a a a a a a a 。
13、,3022,1021⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛=B A 则=-B A 3 。
二、1、判别向量组()1,1,4,21--=α,⎪⎭⎫ ⎝⎛---=25,2,1,32α,⎪⎭⎫ ⎝⎛--=1,21,5,63α是否线性相关。
2、xa a a a x aa a a x a a a a x3、ba a a ab a a a a b a n n n ---2121214、用初等变换法求矩阵的逆矩阵=A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---145243121,B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-5230121015、用克莱姆法则求下面方程组的解:⎪⎪⎩⎪⎪⎨⎧-=+-+--=++=+-=-+-4221234422243213214314321x x x x x x x x x x x x x x ⎪⎪⎩⎪⎪⎨⎧-=-++-=----=+++=+++10225342332532134321432143214321x x x x x x x x x x x x x x x x答案: 一、1.解:令601504321-=A ,则A6012900321-29601100920-29001100020-=02010000129--=01010000158--=1000100158-=58×(-1)=-58 答案:-582. 解:|2A|=24|A|=16×31=31648131)21(||)21(||)21(|21|444=⨯=⨯=⨯=A A A T T 答案:316,4813. 解: 由矩阵的乘法A ×B=[a ij ]m ×n ×[b ij ]n ×t =[c ij ]m ×t 可知 答案:3 , 54. 答案: n5. 解:该非齐次线性方程组的未知数个数为6。
《线性代数的认识》知识点归纳与典型习题.txt线性代数的认识知识点归纳线性代数是一门研究线性方程组、向量空间和线性变换的数学学科。
以下是线性代数的几个重要知识点归纳:1. 线性方程组:线性方程组是由一系列的线性方程组成的。
解线性方程组的方法有高斯消元法、矩阵法和行列式法等。
2. 矩阵与向量:矩阵是由若干行若干列数组成的矩形阵列,通常用括号表示。
向量是具有方向和大小的量,也可以看作是一个特殊的矩阵。
3. 行列式:行列式是矩阵的一个重要概念,可以用来计算矩阵的特征值、特征向量和逆矩阵等。
它由矩阵的元素按一定的规律组成。
4. 向量空间:向量空间是由满足一定性质的向量组成的集合。
向量空间需要满足加法封闭性、标量乘法封闭性以及向量加法和标量乘法的结合律和分配律等。
5. 线性变换:线性变换是指保持向量加法和标量乘法运算的变换。
它可以用矩阵表示,并具有一些重要的性质,如保持向量线性组合和向量数量的比例关系等。
典型题以下是线性代数的一些典型题,供研究和练:1. 计算线性方程组的解:2x + 3y - z = 1x - y + 2z = 43x + 2y - 2z = -32. 计算给定矩阵的逆矩阵。
3. 计算给定矩阵的行列式。
4. 判断给定向量组是否线性相关。
5. 求线性变换的基变换矩阵。
这些典型题涉及了线性代数的各个方面,通过解答这些题,可以加深对线性代数知识点的理解和掌握。
总结:线性代数是一门重要的数学学科,它的知识点主要包括线性方程组、矩阵与向量、行列式、向量空间和线性变换等。
通过练典型题,可以巩固和应用这些知识点,提高线性代数的研究效果。
线性代数考试复习提纲、知识点、例题一、行列式的计算(重点考四阶行列式)1、利用行列式的性质化成三角行列式行列式的性质可概括为五条性质、四条推论,即七种变形手段(转置、交换、倍乘、提取、拆分、合并、倍加);三个为0【两行(列)相同、成比例、一行(列)全为0】2、行列式按行(列)展开定理降阶行列式等于它的任一行(列)的各元素与其对应的代数xx 乘积之和,即1122...i i i i ni ni D a A a A a A =+++ 1,2,...,i n = 例1、计算行列式二、解矩阵方程矩阵方程的标准形式:若系数矩阵可逆,则切记不能写成或求逆矩阵的方法:1、待定系数法2、伴随矩阵法其中叫做的伴随矩阵,它是的每一行的元素的代数xx 排在相同序数的列上的矩阵。
112111222212.....................n n n n nn A A A A A A A A A A *⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭3、初等变换法例2、解矩阵方程例3、解矩阵方程 ,其中三、解齐次或非齐次线性方程组设,元齐次线性方程组有非零解元齐次线性方程组只有零解。
当时,元齐次线性方程组只有零解。
当时,元齐次线性方程组有非零解。
当时,齐次线性方程组一定有非零解。
定义:设齐次线性方程组的解满足:(1) 线性无关,(2)的每一个解都可以由线性表示。
则叫做的基础解系。
定理1、设,齐次线性方程组,若,则该方程组的基础解系一定存在,且每一个基础解系中所含解向量的个数都等于。
齐次线性方程组的通解设,元非齐次线性方程组有解。
唯一解。
无数解。
无解。
非齐次线性方程组的通解,例4、求齐次线性方程组的通解例5、求非齐次线性方程组的通解。
四、含参数的齐次或非齐次线性方程组的解的讨论例6、当为何值时,齐次线性方程组有非零解,并求解。
例7、已知线性方程组,问当为何值时,它有唯一解,无解,无穷多解,并在有无穷多解时求解。
五、向量组的线性相关性线性相关中至少存在一个向量能由其余向量线性表示。
线性代数总结汇总+经典例题(⼀)⾏列式概念和性质线性代数知识点总结1 ⾏列式1、逆序数:所有的逆序的总数2、⾏列式定义:不同⾏不同列元素乘积代数和3、⾏列式性质:(⽤于化简⾏列式)(1))⾏列互换(转置),⾏列式的值不变(2))两⾏(列)互换,⾏列式变号(3))提公因式:⾏列式的某⼀⾏(列)的所有元素都乘以同⼀数k,等于⽤数k 乘此⾏列式(4))拆列分配:⾏列式中如果某⼀⾏(列)的元素都是两组数之和,那么这个⾏列式就等于两个⾏列式之和。
(5))⼀⾏(列)乘k加到另⼀⾏(列),⾏列式的值不变。
(6))两⾏成⽐例,⾏列式的值为0。
(⼆)重要⾏列式4、上(下)三⾓(主对⾓线)⾏列式的值等于主对⾓线元素的乘积5、副对⾓线⾏列式的值等于副对⾓线元素的乘积乘6、Laplace展开式:(A 是m 阶矩阵,B 是n 阶矩阵),则7、n 阶(n≥2)范德蒙德⾏列式数学归纳法证明★8、对⾓线的元素为a,其余元素为 b 的⾏列式的值:(三)按⾏(列)展开9、按⾏展开定理:(1))任⼀⾏(列)的各元素与其对应的代数余⼦式乘积之和等于⾏列式的值(2))⾏列式中某⼀⾏(列)各个元素与另⼀⾏(列)对应元素的代数余⼦式乘积之和等于0(四)⾏列式公式10、⾏列式七⼤公式:(1)|kA|=k n|A|(2)|AB|=|A| ·|B|(3)|A T|=|A|(4)|A -1|=|A| -1(5)|A*|=|A| n-1(6))若A 的特征值λ1、λ2、,, λn ,则(7))若 A 与B 相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1 )⾮齐次线性⽅程组的系数⾏列式不为0 ,那么⽅程为唯⼀解(2))如果⾮齐次线性⽅程组⽆解或有两个不同解,则它的系数⾏列式必为0 (3))若齐次线性⽅程组的系数⾏列式不为0,则齐次线性⽅程组只有0 解;如果⽅程组有⾮零解,那么必有D=0。
2 矩阵(⼀)矩阵的运算1、矩阵乘法注意事项:(1))矩阵乘法要求前列后⾏⼀致;(2))矩阵乘法不满⾜交换律;(因式分解的公式对矩阵不适⽤,但若B=E,O,A-1,A*,f(A)时,可以⽤交换律)(3))AB=O不能推出A=O 或B=O。