第三章矩阵与线性代数计算
- 格式:doc
- 大小:199.00 KB
- 文档页数:24
§3.1 矩阵的运算(1)第三章矩阵矩阵的加法定义1111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b a b a b a b +++⎡⎤⎢⎥+++⎢⎥+=⎢⎥⎢⎥+++⎣⎦A B 设有两个 矩阵 和 n m ⨯[]ij a =A [],ij b =B 那么矩阵与 的和 A B 记作 规定为,+A B 只有当两个矩阵是同型矩阵时,才能进行加法运算.(可加的条件)注矩阵的加法235178190, 645, 368321-⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦设矩阵矩阵则A B 213758169405336281+-++⎡⎤⎢⎥=+-++⎢⎥⎢⎥+++⎣⎦3413755.689⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦对应元相加例1+A B矩阵的加法;+=+A B B A ()()++=++A B C A B C ;+=+=;A OO A A 矩阵加法的运算律 [],ij a =A 设矩阵 (交换律)(结合律)(加法单位元)(1)(2) (3) (4) 规定 [],ija -=-A 称之为 的负矩阵.A ()(),+-=-+=A A A A O ().-=+-A B A B (加法逆元)规定矩阵的减法为:+=+⇒=.A B A C B C (5) 加法消去律成立,即数量乘法111212122211[].n nij m n m m mn ka ka ka kaka ka k ka ka ka ka ⨯⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦A 规定数 k 与矩阵 A 的数量乘积为定义2数量乘法()();k l kl =A A ()k l k l +=+A A A ;()k k k +=+.A B A B 数量乘法的运算规律(1) (2)(3)矩阵的加法和数量乘法统称为矩阵的线性运算 .设为A , B 为矩阵,k, l 为数: m n ⨯矩阵的乘法(矩阵与矩阵相乘)定义3设 是一个 矩阵, m n ⨯[]ij a =A 记作 C =AB.[]ij b =B 是一个 矩阵, n s ⨯规定矩阵 与 的乘积是一个 的矩阵 A Bm s ⨯[],ij c =C 其中 11221nij i j i j in nj ikkjk c a b a b a b ab ==+++=∑()1,2,;1,2,,,i m j s ==矩阵的乘法1212[,,,]j j i i in nj b b a a a b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1122i j i j in nj a b a b a b =+++1n ik kj ij k a b c ===∑行乘列法则可乘条件:左矩阵的列数=右矩阵的行数11211300514-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦设,A 034121.311121⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦B 例20311212113031051412⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦-⎣⎦C AB .⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦5-61022-17乘积矩阵的“型” ? A m n ⨯B n s ⨯C m s⨯=1111⎡⎤=⎢⎥--⎣⎦设,A 例300,00⎡⎤=⎢⎥⎣⎦AB 22,22⎡⎤=⎢⎥--⎣⎦BA .BA AB ≠故1111-⎡⎤=⎢⎥-⎣⎦,B 则矩阵的乘法(1)矩阵乘法一般不满足交换律; 若 ,则称矩阵 与是乘法可交换的. =AB BA A B 定义3=AB O ⇒;==或A O B O (2) ()≠-=若而A O A B C O,⇒=B C.注意:(),+=+A B C AB AC ();+=+B C A BA CA ()()()k k k ==AB A B A B (其中 k 为数);n m ;m n m n m n ⨯⨯⨯==A E E A A 矩阵的乘法()();=AB C A BC 矩阵乘法的运算规律 (1) (2) (3) (4) (结合律) (左分配律)(右分配律)(乘法单位元)11112211211222221122n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩,,,11121121222212n n m m mn n a a a x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111122121122221122n n n n m m mn n a x a x a x a x a x a x a x a x a x ⎡⎤+++⎢⎥+++⎢⎥⎢⎥⎢⎥+++⎢⎥⎣⎦12m b b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦=AX =β⇔=(矩阵形式)AX β ==00(齐次线性方程当时组的矩阵形式),AX β .例4cos sin ,,sin cos OP ϕϕϕϕ-⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦设矩阵平面向量x A y cos ,sin ,x r y r θθ=⎧⎨=⎩于是x y ⎡⎤⎢⎥⎣⎦A cos sin sin cos x y ϕϕϕϕ-⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦cos()sin()r r θϕθϕ+⎡⎤=⎢⎥+⎣⎦例5cos cos sin sin cos sin sin cos r r r r θϕθϕθϕθϕ-⎡⎤=⎢⎥+⎣⎦,,OP r θ设的长度为幅角为则cos sin sin cos x y x y ϕϕϕϕ-⎡⎤=⎢⎥+⎣⎦111x OP y ⎡⎤==⎢⎥⎣⎦.OP ϕ这是把向量按逆(或顺)时针旋转角的旋转变换xyopp 1θϕ11cos sin ,sin cos .x x y y x y ϕϕϕϕ=-⎧⎨=+⎩(线性变换)小结(1)只有当两个矩阵是同型矩阵时,才能进行加法运算;(2) ≠=若而A O AB AC ,⇒;=B C 且矩阵相乘一般不满足交换律;(3)只有当左矩阵的列数等于右矩阵的行数时,两个矩阵才能相乘,矩阵的数乘运算与行列式的数乘运算不同; 可交换的典型例子:同阶对角阵;数量阵与任何同阶方阵. k n E ≠=若而A O BA CA ,⇒=B C.( 4 )§3.1 矩阵的运算(2)方阵的幂·矩阵多项式·迹第三章矩阵定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.一般地, (),,.AB A B A B ⨯≠∈k k k n n注2 注3时,以下结论成立:AB BA =当 (1)();AB A B =kkk222(2)()2;A B A AB B +=++22(3)()();A B A B A B +-=-,,A B ⨯∈n n11(4)()C C .A B A AB AB B --+=+++++mmm k m kkmmm例1解 ,A ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2121214=01010112.01A A ⎡⎤=⎢⎥⎣⎦设求其中为正整数mm ,()32141216,010101A A A ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()122.01A ⎡⎤=≥⎢⎥⎣⎦mm m 由此归纳出方阵的幂112(1)1212,010101A A A --⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦k k k k ()122.01A ⎡⎤=≥⎢⎥⎣⎦m m m 用数学归纳法证明当 时,显然成立.2=m 假设 时成立, 1=-m k 所以对于任意的m 都有=m k 则时,方阵的幂解法二 利用二项式定理122()m m m mA EB EC B=+=+202,.00⎡⎤=⎢⎥⎣⎦B B O 其中=且这种方法适用于主对角元全相同的三角形矩阵求幂 2,=+A E B ,E B 显然与乘法可交换由二项式定理有2E B=+m 100212.010001m ⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦m1110()A A A A E --=++++m m m m n f a a a a 为方阵 A 的矩阵多项式.例如 2()524,f x x x =--12,11⎡⎤=⎢⎥-⎣⎦A 22524A A E --1412101116524211101811--⎡⎤⎡⎤⎡⎤⎡⎤=--=⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦⎣⎦定义2A ⨯∈设n n ,称()A =f:注f g g fA A A A()()()()运算性质 定义3设A 是n 阶方阵,称A 的主对角线上所有元素之和为方阵的迹(trace ),记为11221tr .A ==+++=∑nnn ii i a a a a (1) tr()tr tr ;A B A B ⨯⨯⨯⨯+=+n n n n n n n n (2) tr()tr();A A ⨯⨯=n n n n k k (3) tr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m ntr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m n设A , B 为 n 阶方阵, 求证.AB BA E -≠n tr()tr()tr()0,--AB BA =AB BA = 证明: tr()0,n n =≠E 故 . n -≠AB BA E 例2§3.1 矩阵的运算(3)矩阵的转置·方阵的行列式第三章矩阵例 123,458A ⎡⎤=⎢⎥⎣⎦T ;A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦142538叫做 的转置矩阵, m n A ⨯m n A ⨯把矩阵的行依次变为同序数的列得到的新矩阵, 定义1T A 记作. 思考 T A A 与的关系?⨯→⨯的变化型m n n m(1) : '(,)=元的变化ij ji i j a a (2) :TA A 与的关系?矩阵的转置()()T T 1;=A A ()()T T T 2;+=+A B A B ()()T T 3;A A =k k 注 性质(2)和(4)可推广到有限个矩阵的情形()()T T T T12122;s s '+=+A A ++A A A ++A ()()T T T T 12114.s s s -'=A A A A A A ()()T T T 4.=AB B A (倒序)矩阵的转置与其它矩阵运算的关系若矩阵A 满足 A A =T ,()n ,,,j ,i a a ji ij 21==201035.157A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦例为对称阵如注:对称矩阵为方阵,元素以主对角线为对称轴 对应相等 .例1 (对称矩阵)则称 A 为对称矩阵 .注 对任意矩阵 A,和 均是对称矩阵. T A A T AA对称矩阵的数乘、和、乘积是否为对称矩阵?思考:练习1 对任意实矩阵 A, 若 则 . T A A =O ,A =O练习2 若实对称矩阵 A 满足 则 . 2A =O ,A =O 设A ,B 为同阶实对称矩阵,则AB 为实对称矩阵当且仅当AB =BA .若矩阵A 满足 A A =-T ,013105.350A ⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦例为反对称阵如注:反对称矩阵为方阵,且例2 (反对称矩阵)则称 A 为反对称矩阵 . 0-≠⎧=⎨=⎩ji ij a i j a i j证明任一 n 阶方阵 A 都可表示成一个对称矩阵与一个反对称矩阵之和. 证明: ()T T A A +T A A =+()T T A A -T A A =-22T T A A A A A -++=证毕.例3所以 为对称矩阵.T A A +T ,A A =+T ()A A =-- 所以 为反对称矩阵. T A A -方阵的行列式设 A 与 B 都是数域 上的 n 阶方阵, 则()T1;A A =()3;AB A B =()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系方阵的行列式n n n n n A O E B ⨯⨯-A B =n n nO AB E B ⨯=-2(1)n n E AB =--2(1)n n AB +=-.AB =证明: 22222A O E B ⨯⨯-111221221112212200001001a a a a b b b b =--12111111122122111221220001001a a b a b a a b b b b =--111112211112122221221112212200001001a b a b a b a b a a b b b b ++=--111112211112122221112221211222221112212200001001a b a b a b a b a b a b a b a b b b b b ++++=--222O AB E B ⨯=-设 A 与 B 都是数域 上的 n 阶方阵, 则 ()T 1;A A =()3;AB A B =(可推广到有限个) 一般的, +.A B A B ≠+特别地 ,A A =mm ()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系 其中m 为非负整数.24000200,00430034A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦设2.A 求k 22A A =k k2242443()(4(25))10.0234=⋅=⋅-=-k k k 解 例4证明奇数阶反对称矩阵的行列式为零.例5§3.2 初等矩阵第三章矩阵定义1elementary matrix 阶单位矩阵经过一次矩阵的初等变换所得到的矩阵称为阶即初等矩阵n n (),E B −−−−−→一次初等变换行或列为一个初等矩阵n 1,23100010010100.001001E B ⎡⎤⎡⎤⎢⎥⎢⎥=−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦对换行为一个初等矩阵例如初等矩阵的类型及表示方法1[()],0E ≠初等倍乘矩阵n i k k ) .0E ≠即以数乘单位矩阵的第行(或第列).n k i i i i r c 11[()]11E E ⨯⨯⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦kn n ki k k 或i ←第行初等矩阵的类型及表示方法2[()],0E +≠初等倍加矩阵n i j k k ) .0E ≠即将的某行元素的倍加到另一行(或列)上去.n k 11[())]11E E ++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i jj ir kr n n c kc k i j k 或←i 第行←j 第行[()]E >+n i j k i j 当时,为下三角 .初等矩阵的类型及表示方法3[,],E 初等对换矩阵n i j ) E n 即对调的某两行或某两列.11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行11[()]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n i k k i ←第行1[()],0E ≠初等倍乘矩阵n i k k ) .2[()],0E +≠初等倍加矩阵n i j k k ) .11[())]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n k i j k ←i 第行←j 第行()i j <3[,],E 初等对换矩阵n i j ) 11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行注初等矩阵的转置矩阵仍为同类型的初等阵.Ti k i k=1)[()][()];E En nT+=+i j k j i kE E2)[()][()];n nTi j i j=3)[,][,].E En n初等矩阵的应用揭示: 初等矩阵与矩阵的初等变换的关系.11121314212223243132333411⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦a a a a a a a a k a a a a 111213142122232313233434⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦k a a a a a a a a a ka ka ka 111213142122232431323334111a a a a a a a a k a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111214212221323343133234a a a a a a a a a ka ka a k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦()i k A i r k ⨯相当于以数乘的第行;111211212[()]E A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦n m m m m i i in n a a a i k a ka ka a a a k i ←第行[()]E A 左以矩阵乘m i k ,[()]n E i k A 右乘而以矩阵,其结果结论: 相当于以数k 乘A 的第i 列 .()i c k ⨯。
第三章 矩阵与线性代数计算MATLAB ,即“矩阵实验室”,它是以矩阵为基本运算单元。
因此,本章从最基本的运算单元出发,介绍MATLAB 的命令及其用法。
3.1矩阵的定义由m×n 个元素a ij (i=1,2,…m;j=1,2,…n)排列成的矩形阵称为一个m 行n 列的矩阵,或m×n 阶矩阵,可以简记为A=(a ij ) m×n ,其中的a ij 叫做矩阵的第i 行第j 列元素。
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a A212222111211当m=n 时,称A 为n 阶方阵,也叫n 阶矩阵;当m=1,n ≥2时,即A 中只有一行时,称A 为行矩阵,或行向量(1维数组); 当m ≥2,n=1时,即A 中只有一列时,称A 为列矩阵,或列向量; 当m=1,n=1时,即A 中只有一个元素时,称A 为标量或数量(0维数组)。
3.2矩阵的生成1.实数值矩阵输入MATLAB 的强大功能之一体现在能直接处理向量或矩阵。
当然首要任务是输入待处理的向量或矩阵。
不管是任何矩阵(向量),我们可以直接按行方式输入每个元素:同一行中的元素用逗号(,)或者用空格符来分隔,且空格个数不限;不同的行用分号(;)分隔。
所有元素处于一方括号([ ])内;当矩阵是多维(三维以上),且方括号内的元素是维数较低的矩阵时,会有多重的方括号。
如: 【例3-1】矩阵的生成例。
a=[1 2 3;4 5 6;7 8 9]b=[1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9; 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9; 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9]Null_M = [ ] %生成一个空矩阵a =1 2 34 5 67 8 9b =1.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.60002.0000 2.1000 2.2000 2.3000 2.4000 2.5000 2.60003.0000 3.1000 3.2000 3.3000 3.4000 3.5000 3.60001.7000 1.8000 1.90002.7000 2.8000 2.90003.7000 3.8000 3.9000Null_M =[]2.复数矩阵输入复数矩阵有两种生成方式:【例3-2】a=2.7;b=13/25;C=[1,2*a+i*b,b*sqrt(a); sin(pi/4),a+5*b,3.5+1]C=1.0000 5.4000 + 0.5200i 0.85440.7071 5.3000 4.5000【例3-3】矩阵的生成例。
R=[1 2 3;4 5 6], M=[11 12 13;14 15 16]CN=R+i*MR =1 2 34 5 6M =11 12 1314 15 16CN =1.0000 +11.0000i2.0000 +12.0000i3.0000 +13.0000i4.0000 +14.0000i5.0000 +15.0000i6.0000 +16.0000i3 大矩阵的生成对于大型矩阵,一般创建M文件,以便于修改:【例3-4】用M文件创建大矩阵,文件名为c3e4.mexm=[ 456 468 873 2 579 5521 687 54 488 8 1365 4567 88 98 21 5456 68 4589 654 5 9875488 10 9 6 33 77在MA TLAB命令窗口输入:c3e4;size(exm) %显示exm的大小ans=5 6 %表示exm有5行6列。
4 特殊矩阵的生成命令全零阵函数zeros格式 B = zeros(n) %生成n×n全零阵B = zeros(m,n) %生成m×n全零阵B = zeros([m n]) %生成m×n全零阵B = zeros(size(A)) %生成与矩阵A相同大小的全零阵命令单位阵函数eye格式Y = eye(n) %生成n×n单位阵Y = eye(m,n) %生成m×n单位阵Y = eye(size(A)) %生成与矩阵A相同大小的单位阵命令全1阵函数ones格式Y = ones(n) %生成n×n全1阵Y = ones(m,n) %生成m×n全1阵Y = ones([m n]) %生成m×n全1阵Y = ones(size(A)) %生成与矩阵A相同大小的全1阵命令均匀分布随机矩阵函数rand格式Y = rand(n) %生成n×n随机矩阵,其元素在(0,1)内Y = rand(m,n) %生成m×n随机矩阵Y = rand([m n]) %生成m×n随机矩阵Y = rand(size(A)) %生成与矩阵A相同大小的随机矩阵【例3-5】产生一个3³4随机矩阵R=rand(3,4)R =0.9501 0.4860 0.4565 0.44470.2311 0.8913 0.0185 0.61540.6068 0.7621 0.8214 0.7919【例3-6】产生一个在区间[10, 20]内均匀分布的4阶随机矩阵a=10;b=20;x=a+(b-a)*rand(4)x =19.2181 19.3547 10.5789 11.388917.3821 19.1690 13.5287 12.027711.7627 14.1027 18.1317 11.987214.0571 18.9365 10.0986 16.0379命令正态分布随机矩阵函数randn格式Y = randn(n) %生成n×n正态分布随机矩阵Y = randn(m,n) %生成m×n正态分布随机矩阵Y = randn([m n]) %生成m×n正态分布随机矩阵Y = randn(size(A)) %生成与矩阵A相同大小的正态分布随机矩阵【例3-7】产生均值为0.6,方差为0.1的4阶矩阵mu=0.6; sigma=0.1;x=mu+sqrt(sigma)*randn(4)x =0.8311 0.7799 0.1335 1.05650.7827 0.5192 0.5260 0.48900.6127 0.4806 0.6375 0.79710.8141 0.5064 0.6996 0.8527命令产生随机排列函数randperm格式 p = randperm(n) %产生1~n 之间整数的随机排列 【例3-8】整数的随机排列。
randperm(6) ans =3 2 1 54 6命令 产生线性等分向量函数 linspace格式 y = linspace(a,b) %在(a, b)上产生100个线性等分点 y = linspace(a,b,n) %在(a, b)上产生n 个线性等分点 命令 产生对数等分向量 函数 logspace格式 y = logspace(a,b) %在( )之间产生50个对数等分向量y = logspace(a,b,n)命令 计算矩阵中元素个数n = numel(a) %返回矩阵A 的元素的个数 命令 产生以输入元素为对角线元素的矩阵 函数 blkdiag格式 out = blkdiag(a,b,c,d,…) %产生以a,b,c,d,…为对角线元素的矩阵 【例3-9】产生以输入元素为对角线元素的矩阵 out = blkdiag(1,2,3,4) out =1 0 0 0 02 0 0 0 03 0 0 0 04 命令 Magic(魔方)矩阵函数 magic格式 M = magic(n) %产生n 阶魔方矩阵 【例3-10】产生3 阶魔方矩阵M=magic(3) M =8 1 6 3 5 74 9 2ba 10,103.3矩阵的加减乘除运算1 加、减运算设u 为一数量,A=(a ij ) m×n 和B=(b ij ) r×s 为两矩阵,则加减运算的规定为:对应元素相加、减,即按线性代数中矩阵的“十”,“一”运算进行。
u±A=(u±a ij ) m×nA±B=( a ij ± b ij ) m×n u*A=(u*a ij ) m×n【例3-11】矩阵的加减运算。
输入:u=9a=[1 2 3;4 5 6;7 8 0] b=[3 4 5;6 7 8;9 10 2] c=u+a d=a-be=u*a % 和数组运算相同 结果:c = 10 11 12 13 14 15 16 17 9d = -2 -2 -2 -2 -2 -2 -2 -2 -2e = 9 18 27 36 45 54 63 72 0 2 矩阵的乘及乘方运算设u 为一数量,A=(a ij ) m×l 和B=(b ij ) l×n 为两矩阵, A 的列数l 和B 的行数l 相等,可进行A 与B 的乘法运算。
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ml m m l l a a a a a a a a a A212222111211⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ln 212222111211b b b b b b b b b B l l n n⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=*=mn m m n n c c c c c c c c c B A C212222111211这里c ij =a i1b 1j +a i2b 2j +…a il b lj =tj lt itb a∑=1它表示C 的第i 行第j 列的元素是A 第i 行的各元分别与B 第j 列的各对应元的乘积的和。
【例3-12】矩阵的乘及乘方运算。
a=[1 2 3;4 5 6;7 8 0] f=[1 2 3] g=f*a h=f.*aa = 1 2 3 4 5 6 7 8 0 g = 30 36 15 ??? Error using ==> .* 3.方阵的求逆单位矩阵:主对角线上的元素都是1,其他各元素都是0的n 阶矩阵与任意n 阶矩阵A 左乘或右乘的乘积仍然是A 自身,即EA=AE=A ,因此我们叫E 为n 阶单位矩阵。
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11E 对满秩方阵A ,存在A -1,使A* A -1= A -1*A=E ;我们称A -1是A 的逆矩阵。
命令 逆 函数 inv格式 Y=inv(X) %求方阵X 的逆矩阵。
【例3-13】求⎪⎪⎪⎭⎫ ⎝⎛=343122321A 的逆矩阵A=[1 2 3; 2 2 1; 3 4 3]; Y=inv(A)或Y=A^(-1) 则结果显示为Y =1.0000 3.0000 -2.0000 -1.5000 -3.0000 2.5000 1.0000 1.0000 -1.0000【例3-14】求逆运算。