已知数列{an}
- 格式:doc
- 大小:43.50 KB
- 文档页数:4
《第二节等差数列》同步练习(等差数列的前n项和公式)一、选择题1.已知等差数列{a n}的前n项和为S n,且S2=10,S5=55,则过点P(n,S nn ),Q(n+2,S n+2n+2)(n∈N*)的直线的斜率为( )A.4B.3C.2D.12.[2022辽宁名校高三上联考]已知数列{a n}是等差数列,前n项和为S n,若a1+a2+a3+a4=3,a17+a18+a19+a20=5,则S20=( )A.10B.15C.20D.403.[2022四川成都七中高一下期中]已知等差数列{a n}的公差d<0,a5a7=35,a4+a8=12,前n 项和为S n,则S n的最大值为( )A.66B.72C.132D.1984.(多选)[2022湖南高三上联考]两个等差数列{a n}与{b n}的前n项和分别为S n与T n,且S2n T n =8n3n+5,则( )A.a3+a8=2b3B.当S n=2n2时,b n=6n+2C.a4+a11b4<2D.∀n∈N*,使得T n>05.(多选)[2022安徽临泉一中高二期末]已知等差数列{a n}的前n项和为S n,若S2 021>0,S2 022<0,则( )A.数列{a n}是递增数列B.|a1 012|>|a1 011|C.当S n取得最大值时,n=1 011D.S1 012<S1 0096.[2022山东潍坊高二调研]在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安四百二十里,良马初日行九十七里,日增一十五里;驽马初日行九十二里,日减一里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?( )A.4日B.3日C.5日D.6日7.如果有穷数列a1,a2,…,a n(n∈N*)满足a i=a n-i+1(i=1,2,3,…,n),那么称该数列为“对称数列”.设{a n}是项数为2k-1(k∈N,k≥2)的“对称数列”,其中a k,a k+1,…,a2k-1是首项为50,公差为-4的等差数列,记{a n }的各项之和为S 2k -1,则S 2k -1的最大值为( ) A.622B.624C.626D.6288.(多选)[2022江苏南京高三月考]如图的形状出现在中国南宋数学家杨辉所著的《详解九章算法》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,第四层有10个球,…….设第n 层有a n 个球,从上往下n 层球的总数为S n ,则( )A.S 5=35B.a n +1-a n =nC.S n -S n -1=n(n+1)2,n ≥2 D.1a 1+1a 2+1a 3+…+1a 100=200101二、非选择题9.如图所示,八个边长为1的小正方形拼成一个长为4,宽为2的矩形,A ,B ,D ,E 均为小正方形的顶点,在线段DE 上有 2 020个不同的点P 1,P 2,…,P 2 020,且它们等分DE.记M i =AB ⃗⃗⃗⃗⃗ ·AP i ⃗⃗⃗⃗⃗⃗ (i =1,2,…,2 020).则M 1+M 2+…+M 2 020的值为 .10.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72,则{a n }的通项公式a n = ;若数列{b n }满足b n =12a n -30,其前n 项和为T n ,则T n 的最小值为 .11.[2022辽宁阜新高二上期末]在等差数列{a n }中,S n 是数列{a n }的前n 项和,已知a 2=4,S 4=20.(1)求数列{a n }的通项公式;(2)若b n =(-1)n·a n ,求数列{b n }的前n 项和T n .12.[2022河北唐山一中高二上月考]记S n是等差数列{a n}的前n项和,若S5=-35,S7=-21.(1)求数列{a n}的通项公式,并求S n的最小值;(2)设b n=|a n|,求数列{b n}的前n项和T n.参考答案一、选择题1.C设d为数列{a n}的公差,则{S nn }是公差为d2的等差数列.2.C由题易知S4,S8-S4,S12-S8,S16-S12,S20-S16成等差数列,又S4=3,S20-S16=5,则S20=(S20-S16)+(S16-S12)+(S12-S8)+(S8-S4)+S4=(5+3)×52=20.3.A因为d<0,a5a7=35,a4+a8=a5+a7=12,所以a5=7,a7=5,则d=-1,所以a n=a7+(n-7)d=-n+12,所以a12=0,所以当n=11或12时,S n取得最大值,最大值为S11=S12=12(a1+a12)2= 12×(11+0)2=66.4.AB由S2nT n =8n3n+5,知S10T5=10(a1+a10)25(b1+b5)2=a1+a10b3=a3+a8b3=4020=2,即a3+a8=2b3,故A正确;同理可得a4+a11b4=S14T7=2813>2,故C错误;当S n=2n2时,有S2n=8n2,则T n=n(3n+5),易得b n=6n+2,故B正确;当S n=-2n2时,有S2n=-8n2,则T n=-n(3n+5)<0,则不存在n∈N*,使得T n>0,故D错误.5.BC因为S2 021=2021(a1+a2021)2=2 021a1 011>0,S2 022=2022(a1+a2022)2=1 011(a1 011+a1 012)<0,所以a1 011>0,a1 011+a1 012<0,所以a1 012<0,且|a1 012|>|a1 011|,所以数列{a n}是递减数列,且当n=1 011时,S n取得最大值,故B,C正确,A错误.又S1 012-S1 009=a1 010+a1 011+a1 012=3a1 011>0,所以S1 012>S1 009,故D错误.故选BC.6.A记良马第n日行程为a n,驽马第n日行程为b n,则由题意知数列{a n}是首项为97,公差为15的等差数列,数列{b n}是首项为92,公差为-1的等差数列,则a n=97+15(n-1)=15n+82,b n=92-(n-1)=93-n.因为数列{a n}的前n项和为n(97+15n+82)2=n(179+15n)2,数列{b n}的前n项和为n(92+93−n)2=n(185−n)2,所以n(179+15n)2+n(185−n)2=420×2,整理得n2+26n-120=0,解得n=4或n=-30(舍去),即4日相逢.7.C易知a k+a k+1+…+a2k-1=50k+k(k−1)×(−4)2=-2k2+52k,S2k-1=a1+…+a k+a k+1+…+a2k-1=2(a k+a k+1+…+a2k-1)-a k=-4k2+104k-50=-4(k-13)2+626,当k=13时,S2k-1取到最大值,且最大值为626.故选C.8.ACD因为a1=1,a2-a1=2,a3-a2=3,……,a n-a n-1=n,以上n个式子相加可得a n=1+2+3+…+n=n(n+1)2,所以S5=a1+a2+a3+a4+a5=1+3+6+10+15=35,故A正确;由递推关系可知a n+1-a n=n+1,故B 不正确;当n ≥2时,S n -S n -1=a n =n(n+1)2,故C 正确;因为1a n =2n(n+1)=2(1n−1n+1),所以1a 1+1a 2+…+1a 100=2[(1-12)+(12−13)+…+(1100−1101)]=2(1-1101)=200101,故D 正确.故选ACD.二、非选择题9.14 140 解析如图,设C 为DE 的中点,则AC =72.因为P 1,P 2,…,P 2 020等分DE ,所以AP i ⃗⃗⃗⃗⃗⃗ +AP 2 021−i ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2AC ⃗⃗⃗⃗⃗ .又M 1+M 2+…+M 2 020=AB ⃗⃗⃗⃗⃗ ·(AP 1⃗⃗⃗⃗⃗⃗⃗ +AP 2⃗⃗⃗⃗⃗⃗⃗ +…+AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ),令S =M 1+M 2+…+M 2 020,则2S =AB ⃗⃗⃗⃗⃗ ·(AP 1⃗⃗⃗⃗⃗⃗⃗ +AP 2⃗⃗⃗⃗⃗⃗⃗ +…+AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+AB ⃗⃗⃗⃗⃗ ·(AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AP 2 019⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +…+AP 1⃗⃗⃗⃗⃗⃗⃗ )=AB ⃗⃗⃗⃗⃗ ·[(AP 1⃗⃗⃗⃗⃗⃗⃗ +AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+(AP 2⃗⃗⃗⃗⃗⃗⃗ +AP 2 019⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+…+(AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AP 1⃗⃗⃗⃗⃗⃗⃗ )]=(2×2 020)AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =4 040×√5×72×√5=28 280,所以S =14 140.10.4n -2 -225 解析因为2a n +1=a n +a n +2,所以a n +1-a n =a n +2-a n +1,故数列{a n }为等差数列.设数列{a n }的公差为d.由a 3=10,S 6=72,得{a 1+2d =10,6a 1+15d =72,解得{a 1=2,d =4,所以a n =4n -2,所以b n =12a n -30=2n -31.令{b n ≤0,b n+1≥0,即{2n −31≤0,2(n +1)−31≥0,解得292≤n ≤312.因为n ∈N *,所以数列{b n }的前15项均为负值且第16项为正值,所以T 15最小.因为数列{b n }的首项为-29,公差为2,所以T 15=15(−29+2×15−31)2=-225,所以数列{b n }的前n 项和T n 的最小值为-225.11.(1)设首项为a 1,公差为d ,由题意知 {a 1+d =4,4a 1+4×32d =20,解得{a 1=2,d =2,故a n =2n. (2)由(1)得b n =(-1)n·a n =(-1)n·2n.当n 为偶数时,T n =(-2+4)+(-6+8)+…+[-2(n -1)+2n ]=n2·2=n ;当n 为奇数时,T n =(-2+4)+(-6+8)+…+[-2(n -2)+2(n -1)]-2n =(n -1)-2n =-n -1, 所以T n ={n,n 为偶数,−n −1,n 为奇数.12.(1)设{a n }的公差为d ,则{5a 1+5×42d =−35,7a 1+7×62d =−21,解得{a 1=−15,d =4, 所以a n =-15+4(n -1)=4n -19.由a n=4n-19≥0,得n≥194,所以当n=1,2,3,4时,a n<0,当n≥5时,a n>0,所以S n的最小值为S4=4a1+4×32d=-36.(2)由(1)知,当n≤4时,b n=|a n|=-a n;当n≥5时,b n=|a n|=a n.又S n=na1+n(n−1)2d=2n2-17n,所以当n≤4时,T n=-S n=17n-2n2,当n≥5时,T n=S n-2S4=2n2-17n-2×(-36)=2n2-17n+72,即T n={17n−2n2,n≤4, 2n2−17n+72,n≥5.。
2023高考数列专题——数列的函数性质一、数列的单调性解决数列单调性问题的三种方法(1)作差比较法:根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列; (2)作商比较法:根据a n +1a n (a n>0或a n <0)与1的大小关系进行判断;(3)函数法:结合相应的函数图象直观判断. 例1(2022·滕州模拟)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为( )A .[1,+∞)B .(-3,+∞)C .[-2,+∞)D .⎝⎛⎭⎫-92,+∞ 例2 若数列{a n }满足a n =-2n 2+kn -1,且{a n }是递减数列,则实数k 的取值范围为 跟踪练习1、已知数列{a n }的通项公式为a n =n3n +1,那么这个数列是( )A .递增数列B .递减数列C .摆动数列D .常数列2、请写出一个符合下列要求的数列{a n }的通项公式:①{a n }为无穷数列;②{a n }为单调递增数列;③0<a n <2.这个数列的通项公式可以是________.3、(2022·绵阳模拟)在数列{a n }中,a 1=1,a 1+2a 2+3a 3+…+na n =n +12a n +1.(1)求数列{a n }的通项公式;(2)若存在n ∈N *,使得a n ≤(n +1)λ成立,求实数λ的最小值.二、数列的周期性解决数列周期性问题的方法根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和.例3、若数列{a n }满足a 1=2,a n +1=1+a n1-a n (n ∈N *),则该数列的前2 023项的乘积是( )A .2B .-6C .3D .1例4 (2021·福建福清校际联盟期中联考)已知S n 为数列{a n }前n 项和,若a 1=12,且a n +1=22-a n(n ∈N *),则6S 100=( )A .425B .428C .436D .437跟踪练习1、(2022·福州模拟)已知数列{a n }满足a n +1=11-a n,若a 1=12,则a 2 023=( )A .-1B .12C .1D .2三、数列的最大(小)项求数列的最大项与最小项的常用方法(1)将数列视为函数f (x )当x ∈N *时所对应的一列函数值,根据f (x )的类型作出相应的函数图象,或利用求函数最值的方法,求出f (x )的最值,进而求出数列的最大(小)项;(2)通过通项公式a n 研究数列的单调性,利用⎩⎪⎨⎪⎧ a n ≥a n -1,a n ≥a n +1 (n ≥2)确定最大项,利用⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1 (n ≥2)确定最小项;(3)比较法:若有a n +1-a n =f (n +1)-f (n )>0⎝⎛⎭⎫或a n >0时,a n +1a n >1,则a n +1>a n ,则数列{a n }是递增数列,所以数列{a n }的最小项为a 1=f (1);若有a n +1-a n =f (n +1)-f (n )<0⎝⎛⎭⎫或a n >0时,a n +1a n <1,则a n +1<a n ,则数列{a n }是递减数列,所以数列{a n }的最大项为a 1=f (1).例5(2022·金陵质检)已知数列{a n }满足a 1=28,a n +1-a n n =2,则a nn的最小值为( )A .293B .47-1C .485D .274例6已知数列{a n }的通项公式a n =(n +1)⎝⎛⎭⎫1011n,则数列{a n }中的最大项是第 项. 跟踪练习1、已知数列{a n }的通项公式为a n =n -22n -11,前n 项和为S n ,则当S n 取得最小值时n 的值为________.2、已知递增数列{a n },a n ≥0,a 1=0.对于任意的正整数n ,不等式t 2-a 2n -3t -3a n ≤0恒成立,则正数t 的最大值为( )A .1B .2C .3D .63、(2022·重庆模拟)设S n 为等差数列{a n }的前n 项和,且满足S 2 018>0,S 2 019<0,对任意正整数n ,都有|a n |≥|a k |,则k 的值为( )A .1 008B .1 009C .1 010D .1 0114、(多选)已知数列{a n }满足a n =n ·k n (n ∈N *,0<k <1),下列命题正确的有( )A .当k =12时,数列{a n }为递减数列B .当k =45时,数列{a n }一定有最大项C .当0<k <12时,数列{a n }为递减数列D .当k1-k为正整数时,数列{a n }必有两项相等的最大项5、已知数列{a n }的通项公式a n =632n ,若a 1·a 2·…·a n ≤a 1·a 2·…·a k 对n ∈N *恒成立,则正整数k 的值为________.四、数列与函数的综合问题例7(2022·珠海模拟)已知函数y =f (x +1)的图象关于y 轴对称,且函数f (x )在(1,+∞)上单调,若数列{a n }是公差不为0的等差数列,且f (a 4)=f (a 18),则{a n }的前21项之和为( )A .0B .252C .21D .42跟踪练习1、(2022·青岛模拟)等比数列{a n }的各项均为正数,a 5,a 6是函数f (x )=13x 3-3x 2+8x +1的极值点,则log 2a 1+log 2a 2+…+log 2a 10=( )A .3+log 25B .8C .10D .15 2、已知等比数列{a n }的公比q >1,a 1=2,且a 1,a 2,a 3-8成等差数列.(1)求出数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,任意n ∈N *,S n ≤m 恒成立,求实数m 的最小值.3、 (2022·东莞模拟)已知等差数列{a n }的首项a 1=1,公差为d ,前n 项和为S n .若S n ≤S 8恒成立,则公差d 的取值范围是________.高考数列专题——数列的函数性质(解析版)一、数列的单调性解决数列单调性问题的三种方法(1)作差比较法:根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列;(2)作商比较法:根据a n +1a n (a n>0或a n <0)与1的大小关系进行判断;(3)函数法:结合相应的函数图象直观判断. 例1(2022·滕州模拟)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为( B )A .[1,+∞)B .(-3,+∞)C .[-2,+∞)D .⎝⎛⎭⎫-92,+∞ 解: ∵数列{a n }是单调递增数列,∴对任意的n ∈N *,都有a n +1>a n ,∴(n +1)2+b (n +1)>n 2+bn ,即b >-(2n +1)对任意的n ∈N *恒成立,又n =1时,-(2n +1)取得最大值-3,∴b >-3,即实数b 的取值范围为(-3,+∞).例2 若数列{a n }满足a n =-2n 2+kn -1,且{a n }是递减数列,则实数k 的取值范围为(-∞,6).解:解法一:由数列是一个递减数列,得a n +1<a n ,又因为a n =-2n 2+kn -1,所以-2(n +1)2+k (n +1)-1<-2n 2+kn -1,k <4n +2,对n ∈N *,所以k <6.解法二:数列{a n }的通项公式是关于n (n ∈N *)的二次函数,∵数列是递减数列,∴k 4<32,∴k <6.跟踪练习1、已知数列{a n }的通项公式为a n =n3n +1,那么这个数列是( )A .递增数列B .递减数列C .摆动数列D .常数列解析:A 由a n =n 3n +1,可得a n +1-a n =n +13n +4-n 3n +1=1(3n +1)(3n +4)>0,∴a n +1>a n ,故选A .2、请写出一个符合下列要求的数列{a n }的通项公式:①{a n }为无穷数列;②{a n }为单调递增数列;③0<a n <2.这个数列的通项公式可以是________.解析:因为函数a n =2-1n 的定义域为N *,且a n =2-1n 在N *上单调递增,0<2-1n <2,所以满足3个条件的数列的通项公式可以是a n =2-1n.答案:a n =2-1n(答案不唯一)3、(2022·绵阳模拟)在数列{a n }中,a 1=1,a 1+2a 2+3a 3+…+na n =n +12a n +1.(1)求数列{a n }的通项公式;(2)若存在n ∈N *,使得a n ≤(n +1)λ成立,求实数λ的最小值.解:(1)∵a 1+2a 2+3a 3+…+na n =n +12a n +1,∴当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1=n2a n ,两式相减得na n =n +12a n +1-n2a n ,即(n +1)a n +1na n=3(n ≥2),∵a 1=1,∴1=1+12a 2,即a 2=1,∴2·a 21·a 1=2≠3.∴数列{na n }是从第二项开始的等比数列, ∴当n ≥2时,有na n =2×3n -2, ∴a n =⎩⎪⎨⎪⎧1,n =1,2n×3n -2,n ≥2.(2)存在n ∈N *使得a n ≤(n +1)λ成立⇔λ≥a nn +1有解,①当n =1时,a 12=12,则λ≥12,即λmin =12;②当n ≥2时,a nn +1=2×3n -2n (n +1),设f (n )=2×3n -2n (n +1),∴f (n +1)f (n )=3nn +2>1,∴f (n )单调递增,∴f (n )min =f (2)=13,∴实数λ的最小值是13.由①②可知实数λ的最小值是13.二、数列的周期性解决数列周期性问题的方法根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和.例3、若数列{a n }满足a 1=2,a n +1=1+a n1-a n (n ∈N *),则该数列的前2 023项的乘积是( 3 )A .2B .-6C .3D .1解 因为数列{a n }满足a 1=2,a n +1=1+a n 1-a n (n ∈N *),所以a 2=1+a 11-a 1=1+21-2=-3,同理可得a 3=-12,a 4=13,a 5=2,…所以数列{a n }每四项重复出现,即a n +4=a n ,且a 1·a 2·a 3·a 4=1,而2 023=505×4+3,所以该数列的前2 023项的乘积是a 1·a 2·a 3·a 4·…·a 2 023=1505×a 1×a 2×a 3=3.例4 (2021·福建福清校际联盟期中联考)已知S n 为数列{a n }前n 项和,若a 1=12,且a n +1=22-a n(n ∈N *),则6S 100=( A )A .425B .428C .436D .437解: 由数列的递推公式可得:a 2=22-a 1=43,a 3=22-a 2=3,a 4=22-a 3=-2,a 5=22-a 4=12=a 1,据此可得数列{a n }是周期为4的周期数列,则:6S 100=6×25×⎝⎛⎭⎫12+43+3-2=425. 跟踪练习1、(2022·福州模拟)已知数列{a n }满足a n +1=11-a n ,若a 1=12,则a 2 023=( )A .-1B .12C .1D .2解析:B 由a 1=12,a n +1=11-a n得a 2=2,a 3=-1,a 4=12,a 5=2,…,可知数列{a n }是以3为周期的周期数列,因此a 2 023=a 3×674+1=a 1=12.五、数列的最大(小)项求数列的最大项与最小项的常用方法(1)将数列视为函数f (x )当x ∈N *时所对应的一列函数值,根据f (x )的类型作出相应的函数图象,或利用求函数最值的方法,求出f (x )的最值,进而求出数列的最大(小)项;(2)通过通项公式a n 研究数列的单调性,利用⎩⎪⎨⎪⎧ a n ≥a n -1,a n ≥a n +1 (n ≥2)确定最大项,利用⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1 (n ≥2)确定最小项;(3)比较法:若有a n +1-a n =f (n +1)-f (n )>0⎝⎛⎭⎫或a n >0时,a n +1a n >1,则a n +1>a n ,则数列{a n }是递增数列,所以数列{a n }的最小项为a 1=f (1);若有a n +1-a n =f (n +1)-f (n )<0⎝⎛⎭⎫或a n >0时,a n +1a n <1,则a n +1<a n ,则数列{a n }是递减数列,所以数列{a n }的最大项为a 1=f (1).例5(2022·金陵质检)已知数列{a n }满足a 1=28,a n +1-a n n =2,则a nn 的最小值为( C )A .293B .47-1C .485D .274解: 由a n +1-a n =2n ,可得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=28+2+4+…+2(n -1)=28+n (n -1)=n 2-n +28,∴a n n =n +28n -1,设f (x )=x +28x ,可知f (x )在(0,28 ]上单调递减,在(28,+∞)上单调递增,又n ∈N *,且a 55=485<a 66=293.例6已知数列{a n }的通项公式a n =(n +1)⎝⎛⎭⎫1011n,则数列{a n }中的最大项是第9、10项.解: 解法一:∵a n +1-a n =(n +2)⎝⎛⎭⎫1011n +1-(n +1)⎝⎛⎭⎫1011n =⎝⎛⎭⎫1011n ×9-n 11, 当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n , ∴该数列中有最大项,为第9、10项, 且a 9=a 10=10×⎝⎛⎭⎫10119.解法二:根据题意,令⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2),即⎩⎨⎧n ×⎝⎛⎭⎫1011n -1≤(n +1)⎝⎛⎭⎫1011n,(n +1)⎝⎛⎭⎫1011n≥(n +2)⎝⎛⎭⎫1011n +1,解得9≤n ≤10.又n ∈N *,∴n =9或n =10,∴该数列中有最大项,为第9、10项, 且a 9=a 10=10×⎝⎛⎭⎫10119. 跟踪练习1、已知数列{a n }的通项公式为a n =n -22n -11,前n 项和为S n ,则当S n 取得最小值时n 的值为________.解析:当a n =n -22n -11>0⇒n =1或n ≥6,∴a 2=0,a 3<0,a 4<0,a 5<0,故当S n 取得最小值时n 的值为5.2、已知递增数列{a n },a n ≥0,a 1=0.对于任意的正整数n ,不等式t 2-a 2n -3t -3a n ≤0恒成立,则正数t 的最大值为( )A .1B .2C .3D .6解析:C 因为数列{a n }是递增数列,又t 2-a 2n -3t -3a n =(t -a n -3)(t +a n )≤0,t +a n >0,所以t ≤a n+3恒成立,即t ≤(a n +3)min =a 1+3=3,所以t max =3.3、(2022·重庆模拟)设S n 为等差数列{a n }的前n 项和,且满足S 2 018>0,S 2 019<0,对任意正整数n ,都有|a n |≥|a k |,则k 的值为( )A .1 008B .1 009C .1 010D .1 011解析:C 因为S 2 018>0,S 2 019<0,所以a 1+a 2 018=a 1 009+a 1 010>0,a 1+a 2 019=2a 1 010<0,所以a 1 009>0,a 1 010<0,且a 1 009>|a 1 010|,因为对任意正整数n ,都有|a n |≥|a k |,所以k =1 010,故选C .4、(多选)已知数列{a n }满足a n =n ·k n (n ∈N *,0<k <1),下列命题正确的有( )A .当k =12时,数列{a n }为递减数列B .当k =45时,数列{a n }一定有最大项C .当0<k <12时,数列{a n }为递减数列D .当k1-k为正整数时,数列{a n }必有两项相等的最大项解析:BCD 当k =12时,a 1=a 2=12,知A 错误;当k =45时,a n +1a n =45·n +1n ,当n <4时,a n +1a n>1,当n >4时,a n +1a n <1,所以可判断{a n }一定有最大项,B 正确;当0<k <12时,a n +1a n =k n +1n <n +12n ≤1,所以数列{a n }为递减数列,C 正确;当k 1-k 为正整数时,1>k ≥12,当k =12时,a 1=a 2>a 3>a 4>…,当1>k >12时,令k 1-k =m ∈N *,解得k =mm +1,则a n +1a n =m (n +1)n (m +1),当n =m 时,a n +1=a n ,结合B ,数列{a n }必有两项相等的最大项,故D 正确.故选B 、C 、D .5、已知数列{a n }的通项公式a n =632n ,若a 1·a 2·…·a n ≤a 1·a 2·…·a k 对n ∈N *恒成立,则正整数k 的值为________.解析:a n =632n ,当n ≤5时,a n >1;当n ≥6时,a n <1,由题意知,a 1·a 2·…·a k 是{a n }的前n 项乘积的最大值,所以k =5.六、数列与函数的综合问题例7(2022·珠海模拟)已知函数y =f (x +1)的图象关于y 轴对称,且函数f (x )在(1,+∞)上单调,若数列{a n }是公差不为0的等差数列,且f (a 4)=f (a 18),则{a n }的前21项之和为( C )A .0B .252C .21D .42解: 由函数y =f (x +1)的图象关于y 轴对称,且函数f (x )在(1,+∞)上单调,可得y =f (x )的图象关于直线x =1对称,由数列{a n }是公差不为0的等差数列,且f (a 4)=f (a 18),可得a 4+a 18=2,又{a n }是等差数列,所以a 1+a 21=a 4+a 18=2,可得数列的前21项和S 21=21(a 1+a 21)2=21,则{a n }的前21项之和为21.故选.跟踪练习1、(2022·青岛模拟)等比数列{a n }的各项均为正数,a 5,a 6是函数f (x )=13x 3-3x 2+8x +1的极值点,则log 2a 1+log 2a 2+…+log 2a 10=( )A .3+log 25B .8C .10D .15解析:D f ′(x )=x 2-6x +8,∵a 5,a 6是函数f (x )的极值点,∴a 5,a 6是方程x 2-6x +8=0的两实数根,则a 5·a 6=8,∴log 2a 1+log 2a 2+…+log 2a 10=log 2(a 1·a 2·…·a 10)=log 2(a 5·a 6)5=5log 28=15,故选D .2、已知等比数列{a n }的公比q >1,a 1=2,且a 1,a 2,a 3-8成等差数列. (1)求出数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,任意n ∈N *,S n ≤m 恒成立,求实数m 的最小值.[解] (1)因为a 1=2,且a 1,a 2,a 3-8成等差数列,所以2a 2=a 1+a 3-8,即2a 1q =a 1+a 1q 2-8,所以q 2-2q -3=0, 所以q =3或q =-1,又q >1,所以q =3,所以a n =2·3n -1(n ∈N *). (2)因为数列{a n }是首项为2,公比为3的等比数列,所以1a n +11a n =a n a n +1=13,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为12,公比为13的等比数列,所以S n =12⎣⎡⎦⎤1-⎝⎛⎭⎫13n 1-13=34⎣⎡⎦⎤1-⎝⎛⎭⎫13n <34,因为任意n ∈N *,S n ≤m 恒成立,所以m ≥34,即实数m 的最小值为34.3、(2022·东莞模拟)已知等差数列{a n }的首项a 1=1,公差为d ,前n 项和为S n .若S n ≤S 8恒成立,则公差d 的取值范围是________.解析:根据等差数列{a n }的前n 项和S n 满足S n ≤S 8恒成立,可知a 8≥0且a 9≤0,所以1+7d ≥0且1+8d ≤0,解得-17≤d ≤-18.答案:⎣⎡⎦⎤-17,-18。
第6讲 通项公式的求解策略:Sn 与an 关系一.选择题(共1小题)1.(2021•蒙阴县校级期中)已知数列满足,且对任意都有,则的取值范围为 A .,B .,C .,D .,二.填空题(共3小题)2.(2021•道里区校级期中)设是数列的前项和,,当时,有,则使成立的正整数的最小值为 .3.设数列的前项和为,若且当时,,则数列的通项公式 .4.(2021•冀州市校级模拟)已知数列的首项,其前项和为,且满足,若对,恒成立,则实数的取值范围是 .三.解答题(共36小题)5.(2021•浙江模拟)已知数列前项和为满足,.(Ⅰ)求通项公式;(Ⅱ)设,求证:.6.已知数列的前项和为,,求的前3项,并求它的通项公式.7.已知数列的前项和是,求数列的前3项,并求它的通项公式.8.(2021•武进区校级模拟)已知数列的前项和为,,且为与的等差中项,当时,总有.(1)求数列的通项公式;(2)记为在区间,内的个数,记数列的前项和为,求.9.在数列中,,是的前项和,当时,.(1)求证:数列是等差数列;(2)求数列的通项公式;{}n a 21232(*)n n a a a a n N ⋯=∈*n N ∈12111n t a a a ++⋯+<t ()1(3)+∞1[3)+∞2(3)+∞2[3)+∞n S {}n a n 13a =2n …1122n n n n n S S S S na --+-=122021m S S S ⋯⋯…m {}n a n n S 13a =2n …12(*)n n n a S S n N -=⋅∈{}n a n a ={}n a 1a t =n n S 212n n S S n n ++=+*n N ∀∈1n n a a +<t {}n a n n S 12S =132(*)n n S S n N +=+∈n a (*)n n na b n N S =∈12121332n b b b n ++⋯+-……{}n a n n S 2n S n n =+{}n a {}n a n 2132n S n n =++{}n a n n S 11a =1a 2a 2S 2n …11230n n n S S S +--+={}n a m b 1{}na (014](*)m m N -∈2{(1)}m mb -⋅m m W 20W {}n a 11a =n S {}n a n 2n …112n n n n S S S S ---=1{}nS {}n a(3)设,求数列的前项和.10.(2021春•宣威市月考)已知数列的首项为,前项和为,且对任意的,当时,总是与的等差中项.(Ⅰ)求数列的通项公式;(Ⅱ)设,是数列的前项和,,求;(Ⅲ)设,是数列的前项和,,试证明:.11.(2021春•崂山区校级期中)已知是数列的前项和,当时,,且,.(1)求数列的通项公式;(2)等比数列满足,求数列的前项和.12.(2021•安徽月考)已知数列的前项和为,满足,为常数).(1)求的通项公式;(2)若,求数列的前项和为.13.(2021•浦城县期中)已知数列的前项和是,且,.(1)求数列的通项公式;(2)设,,求的取值范围.14.(2021•永昌县校级月考)已知数列为正项等比数列,,数列满足,且.(Ⅰ)求数列和的通项公式;(Ⅱ)若的前项和,求的取值范围.15.(2021•沈阳四模)已知数列中,,其前项和满足.(1)求;(2)记,求数列的前项和.112(23)n n n C n a ++=-{}n C n n T 12a =n n S *n N ∈2n …n a 34n S -1522n S --{}n a (1)n n b n a =+n T {}n b n *n N ∈n T 13423n n n n na c a -=⋅-⋅n P {}n c n *n N ∈32nP <n S {}n a n 2n (11)22n n n S S S +-++=10S =24a ={}n a {}n b 22331b a b a =={}n n a b g n n T {}n a n n S 11a =1()(2n S n t n t =+{}n a 1(1)()n n n n b lg a a +=-⋅{}n b n n T {}n a n n S 1n n S a +=*0()n a n N ≠∈{}n a 2log (1)(*)n n b S n N =-∈12231111n n n T b b b b b b +=+++n T {}n a 12a ={}n b 25b =11122332(21)2n n n a b a b a b a b n ++++⋅⋅⋅+=+-{}n a {}n b 11{}n n b b +n n T n T {}n a 11a =n n S *11()n n a S n N +=+∈n S 11n nn n n S S b S S ++-={}n b n n T16.(2021•福田区校级四模)已知数列的前项和为,,数列满足.(1)求;(2)设,求数列的前项和.17.(2021•温州模拟)已知数列的前项和为,且.(Ⅰ)求,及通项公式;(Ⅱ)记,求数列的前项的和.18.(2021•厦门一模)在,与的等比中项,③这三个条件中任选一个,补充在下面的问题中,并解答.问题:已知数列的前项和为,,且满足 _____,若,求使不等式成立的最小正整数.19.(2021•河南期末)已知数列的前项和满足,数列满足.(Ⅰ)求,的通项公式;(Ⅱ)若数列满足,求的前项和.20.(2021•皇姑区校级期末)已知数列前项和为,且,,数列为等差数列,,且.(Ⅰ)求数列和的通项公式;(Ⅱ)若,求的前项和.21.(2021•碑林区校级模拟)已知数列的前项和为,若,.(1)求的通项公式;(2)设,求数列的前项和.22.已知数列的前项和为,且.(1)证明为等比数列;(2)若,求的前项和.23.(2021•淮安期末)从条件①,,③,,中任{}n a n n S 2n n S a n n =+-{}n b 1n nb a =n a 1n n nc b b +=⋅{}n c n n T {}n a n n S 2,,n n n S n n ⎧=⎨⎩为奇数为偶数2a 3a n a 1n n n b a a +=+1{2}n n b -⋅2n 2n T 1=+21n +n a 24(1)(0)n n n S a a =+>{}n a n n S 11a =11n n n b a a +=12919n b b b ++⋯+>n {}n a n n S 21n n S a =-{}n b 221log log n n n b a a +=+{}n a {}n b {}n c n n n c a b ={}n c n n T {}n a n n S 13a =11n n S a +=-{}n b 24a b =257b b b +={}n a {}n b 1(2)n nn n a b c n b +=+{}n c n n T {}n a n n S 0n a >218a a =112n a +=n a n b ={}n b n n T {}n a n n S *24()n n S a n n N -=-∈{2}n S n -+11n n n n a b a a +-={}n b n n T 2(1)n n S n a =+(2)n a n +=…0n a >22nn n a a S +=选一个,补充到下面问题中,并给出解答.已知数列的前项和为,,_____.(1)求数列的通项公式;(2)若,,成等比数列,求正整数的值.24.(2021•连城县校级月考)已知正项数列的前项和为是与的等比中项,数列中,若,且.(1)求证:数列是等比数列,并求其通项公式;(2)若,记数列的前项和为,对,求使不等式恒成立的的最小正整数值.25.(2021•息县校级三模)已知在数列中,,,前项和为,若.(1)求数列的通项公式;(2)若数列的前项和为,求.26.(2016•荆州模拟)已知数列中,,,其前项和满足.(Ⅰ)求数列的通项公式;(Ⅱ) 若,设数列的前的和为,当为何值时,有最大值,并求最大值.27.(2016秋•儋州校级期末)已知数列满足,.(1)求证:数列为等差数列;(2)求的通项公式.28.(2021•河西区一模)已知各项均为正数的数列的前项和为,满足,,,,恰为等比数列的前3项.(Ⅰ)求数列,的通项公式;(Ⅱ)设,求数列的前项和.29.(2021春•瑶海区月考)已知数列的各项均为正数,,其前项和为,且当时,、{}n a n n S 11a ={}n a 1a k a 2k S +k {}n a n n S 142(1)n a +{}n b 11b a =123n n b b -=+{3}n b +3n n n a b =+ð{}n ðn n T *n N ∀∈302n T λ-+…λ{}n a 14a =0n a >n n S 2)n a n =…{}n a 11{}n n a a +n n T n T {}n a 13a =25a =n n S 12122(3)n n n n S S S n ---+=+…{}n a n a *22256log (1n n b n N a =∈-{}n b n n S n n S {}n a 11a =22(2)21nn n S a n S =- (1){}nS {}n a {}n a n n S 2124n n a S n +=++21a -3a 7a {}n b {}n a {}n b 111n n n n na a ab +-=g g ð{}n ðn n T {}n a 12a =n n S 2n …n S、构成等差数列.(1)求数列的通项公式;(2)若数列满足,数列的前项和为,求.30.(2021春•平顶山期末)已知数列的各项均为正数,其前项和为,满足.(Ⅰ)证明:数列为等差数列;(Ⅱ)求满足的最小正整数.31.(2021•邵东市校级月考)已知数列的各项均为正数,对任意的,它的前项和满足,并且,,成等比数列.(1)求数列的通项公式;(2)设,为数列的前项和,求.32.(2021•南通模拟)已知数列的各项均为正数,前项和为,首项为2.若对任意的正整数,恒成立.(1)求,,;(2)求证:是等比数列;(3)设数列满足,若数列,,,,为等差数列,求的最大值.33.(2021•通州区学业考试)已知数列的各项均为正数,其前项和为,且.(1)求证:数列为等差数列;(2)从数列中抽出个不同的项按一定次序组成新数列.①若,且,,成等差数列,求的值;②是否存在偶数,使得,,,,,成等差数列?若存在,请求出的值;若不存在,请说明理由.214n a 1n S -{}n a {}n b (1)n n n b lnS =-{}n b n n T n T {}n a n n S 224(*)n n n a S a n N =+∈2{}nS 12n a <n {}n a *n N ∈n n S 2111623n n n S a a =++2a 4a 9a {}n a 11(1)n n n n b a a ++=-g n T {}n b n 2n T {}n a n n S 22211(1)(1)22m n m n S a S ++=+m n 2a 3a 4a {}n a {}n b (1)n n n b a =--1n b 2n b ⋯12(t n t b n n n <<⋯<*)t N ∈t {}n a n n S *11()2n n nS a n N a =+∈2{}nS 2{}nS k {}k b 13b …12b b 23b b 31b b 123b b b ++k 12b b 23b b 34b b ⋯1k k b b -1k b b k34.已知数列,对任意,都有.(1)若是首项为1,公差为1的等差数列,求数列的通项公式;(2)若是等差数列,是等比数列,求证:.35.(2021春•广东月考)已知数列满足:,.(1)求,的值;(2)求数列的通项公式;(3)令,如果对任意,都有,求实数的取值范围.36.已知数列的首项,其前项和为,且满足;(1)求数列的通项公式;(2)当时,证明:对任意,都有.37.(2021春•内江期末)已知数列的前项和为,,且,数列满足,,对任意,都有.(1)求数列、的通项公式;(2)令.求证:;38.(2021•新罗区校级期中)已知数列满足对任意的都有,且.(1)求数列的通项公式;(2)设数列的前项和为,不等式式对任意的正整数恒成立,求实数的取值范围.39.(2013秋•东胜区校级月考)已知数列满足,其中是的前项和,且,求(1)求的表达式;(2)求.40.(2021春•东湖区校级月考)已知等差数列的首项,公差,且第二项,第五项,第十四项分别是等比数列的第二项,第三项,第四项.{}n a {}n b *n N ∈112132122n n n n n a b a b a b a b n +--+++⋯+=--{}n a {}n b {}n a {}n b 112233111132n n a b a b a b a b +++⋯+<{}n a 123n n a a a a n a +++⋅⋅⋅+=-*n N ∈1a 2a {}n a (2)(1)n n b n a =--*n N ∈214n b t t +…t {}n a 1a a =n n S 2*13(1)()n n S S n n N ++=+∈{}n a 32a =*n N ∈2222232121111112n n a a a a -++⋯++<{}n a n n S 11a =(1)2(*)n n n a S n N +=∈{}n b 112b =214b =*n N ∈212n n n b b b ++={}n a {}n b 1122n n n T a b a b a b =++⋯+122n T <…{}n a *n N ∈0n a >33321212()n n a a a a a a ++⋯+=++⋯+{}n a 21n n a a +⎧⎫⎨⎬⎩⎭n n S 1log (1)3n a s a >-n a {}n a 2*()n n S n a n N =∈n S {}n a n 11a =n a n S {}n a 11a =0d >{}n b(1)求数列与的通项公式;(2)设数列对任意自然数,均有,求的前项和.{}n a {}n b {}n c n 3121123n n nc c c c a b b b b ++++⋯+={}n c n n S。
高考数学《数列》大题训练50题1 .数列{}的前n 项和为,且满足,.n a n S 11a =2(1)n n S n a =+(1)求{}的通项公式; (2)求和T n =.n a 1211123(1)na a n a ++++L 2 .已知数列,a 1=1,点在直线上.}{n a *))(2,(1N n a a P n n ∈+0121=+-y x (1)求数列的通项公式;}{n a (2)函数,求函数最小值.)2*,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 )(n f 3 .已知函数(a ,b 为常数)的图象经过点P (1,)和Q (4,8)x ab x f =)(81(1) 求函数的解析式;)(x f (2) 记a n =log 2,n 是正整数,是数列{a n }的前n 项和,求的最小值。
)(n f n S n S 4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15.求=f (1)+f (2)+…+f (n )的表达式.n S 5 .设数列的前项和为,且,其中是不等于和0的实常数.{}n a n n S 1n n S c ca =+-c 1-(1)求证: 为等比数列;{}n a (2)设数列的公比,数列满足,试写出 的{}n a ()q f c ={}n b ()()111,,23n n b b f b n N n -==∈≥1n b ⎧⎫⎨⎬⎩⎭通项公式,并求的结果.12231n n b b b b b b -+++L 6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量与向量共线,且1+n n A A n n C B 点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上.(1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.7 .已知数列的前三项与数列的前三项对应相同,且…对任意的{}n a {}n b 212322a a a +++12n n a -+8n =∈n N*都成立,数列是等差数列.1{}n n b b +-(1)求数列与的通项公式;{}n a {}n b (2)问是否存在N *,使得?请说明理由.k ∈(0,1)k k b a -∈8 .已知数列),3,2(1335,}{11 =-+==-n a a a a nn n n 且中(I )试求a 2,a 3的值;(II )若存在实数为等差数列,试求λ的值.}3{,nn a λλ+使得9 .已知数列的前项和为,若,{}n a n n S ()1,211++=⋅=+n n S a n a n n(1)求数列的通项公式;{}n a (2)令,①当为何正整数值时,:②若对一切正整数,总有,求的n nn S T 2=n 1+>n n T T n m T n ≤m 取值范围。
习题课一 求数列的通项题型一 利用累加、累乘法求数列的通项公式【例1】 (1)数列{a n }满足a 1=1,对任意的n ∈N *都有a n +1=a 1+a n +n ,求数列{a n }的通项公式;(2)已知数列{a n }满足a 1=23,a n +1=nn +1a n ,求a n .解 (1)∵a n +1=a n +n +1,∴a n +1-a n =n +1,即a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2).等式两边同时相加得a n -a 1=2+3+4+…+n (n ≥2),即a n =a 1+2+3+4+…+n =1+2+3+4+…+n =n (n +1)2,n ≥2.又a 1=1也适合上式,∴a n =n (n +1)2,n ∈N *.(2)由条件知a n +1a n =nn +1,分别令n =1,2,3,…,n -1,代入上式得(n -1)个等式,累乘,即a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=12×23×34×…·n -1n (n ≥2).∴a na 1=1n ,又∵a 1=23,∴a n =23n ,n ≥2.又a 1=23也适合上式,∴a n =23n ,n ∈N *.规律方法 (1)求形如a n +1=a n +f (n )的通项公式.将原来的递推公式转化为a n +1-a n =f (n ),再用累加法(逐差相加法)求解,即a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+f (1)+f (2)+f (3)+…+f (n -1).(2)求形如a n +1=f (n )a n 的通项公式.将原递推公式转化为a n +1a n=f (n ),再利用累乘法(逐商相乘法)求解,即由a 2a 1=f (1),a 3a2=f (2),…,a na n -1=f (n -1),累乘可得a na1=f (1)f (2)…f (n -1).【训练1】 数列{a n }中,a 1=2,a n +1-a n =2n ,求{a n }的通项公式.解 因为a 1=2,a n +1-a n =2n ,所以a 2-a 1=2,a 3-a 2=22,a 4-a 3=23,…,a n -a n -1=2n -1,n ≥2,以上各式累加得,a n -a 1=2+22+23+…+2n -1,故a n=2(1-2n-1)1-2+2=2n,当n=1时,a1也符合上式,所以a n=2n.题型二 构造等差(比)数列求通项公式【例2】 (1)在数列{a n}中,a1=13,6a n a n-1+a n-a n-1=0(n≥2,n∈N*).①证明:数列{1a n}是等差数列;②求数列{a n}的通项公式.(2)已知数列{a n}中,a1=2,a n+1=2a n-3,求a n.(1)①证明 由6a n a n-1+a n-a n+1=0,整理得1a n-1a n-1=6(n≥2),故数列{1a n}是以3为首项,6为公差的等差数列.②解 由①可得1a n=3+(n-1)×6=6n-3,所以a n=16n-3,n∈N*.(2)解 由a n+1=2a n-3得a n+1-3=2(a n-3),所以数列{a n-3}是首项为a1-3=-1,公比为2的等比数列,则a n-3=(-1)·2n-1,即a n=-2n-1+3.规律方法 (1)课程标准对递推公式要求不高,故对递推公式的考查也比较简单,一般先构造好等差(比)数列让学生证明,再在此基础上求出通项公式,故同学们不必在此处挖掘过深. (2)形如a n+1=pa n+q(其中p,q为常数,且pq(p-1)≠0)可用待定系数法求得通项公式,步骤如下:第一步 假设递推公式可改写为a n+1+t=p(a n+t);第二步 由待定系数法,解得t=qp-1;第三步 写出数列{a n+q p-1}的通项公式;第四步 写出数列{a n}的通项公式.【训练2】 已知各项均为正数的数列{b n}的首项为1,且前n项和S n满足S n-S n-1=S n+S n-1(n≥2).试求数列{b n}的通项公式.解 ∵S n-S n-1=S n+S n-1(n≥2),∴(S n+S n-1)(S n-S n-1)=S n+S n-1(n≥2).又S n >0,∴S n -S n -1=1.又S 1=1,∴数列{S n }是首项为1,公差为1 的等差数列,∴S n =1+(n -1)×1=n ,故S n =n 2.当n ≥2时,b n =S n -S n -1=n 2-(n -1)2=2n -1.当n =1时,b 1=1符合上式.∴b n =2n -1.题型三 利用前n 项和S n 与a n 的关系求通项公式【例3】 (1)已知数列{a n }的前n 项和为S n ,若S n =2a n -4,n ∈N *,则a n 等于( )A.2n +1 B.2n C.2n -1D.2n -2(2)已知数列{a n }中,前n 项和为S n ,且S n =n +23·a n ,则a n a n -1的最大值为( )A.-3B.-1C.3D.1解析 (1)因为S n =2a n -4,所以n ≥2时,S n -1=2a n -1-4,两式相减可得S n -S n -1=2a n -2a n -1,即a n =2a n -2a n -1,整理得a n =2a n -1,所以a n a n -1=2.因为S 1=a 1=2a 1-4,即a 1=4,所以数列{a n }是首项为4,公比为2的等比数列,则a n =4×2n -1=2n +1,故选A.(2)由S n =n +23a n 得,当n ≥2时,S n -1=n +13a n -1,两式作差可得:a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n a n -1=n +1n -1=1+2n -1,由此可得,当n =2时,a n a n -1取得最大值,其最大值为3.答案 (1)A (2)C规律方法 已知S n =f (a n )或S n =f (n )的解题步骤:第一步 利用S n 满足条件p ,写出当n ≥2时,S n -1的表达式;第二步 利用a n =S n -S n -1(n ≥2),求出a n 或者转化为a n 的递推公式的形式;第三步 若求出n ≥2时的{a n }的通项公式,则根据a 1=S 1求出a 1,并代入n ≥2时的{a n }的通项公式进行验证,若成立,则合并;若不成立,则写出分段形式.如果求出的是{a n }的递推公式,则问题化归为例2形式的问题.【训练3】 在数列{a n }中,a 1=1,a 1+2a 2+3a 3+…+na n =n +12a n +1(n ∈N *),求数列{a n }的通项公式a n .解 由a 1+2a 2+3a 3+…+na n =n +12a n +1,得当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1=n2a n ,两式作差得na n =n +12a n +1-n 2a n ,得(n +1)a n +1=3na n (n ≥2),即数列{na n }从第二项起是公比为3的等比数列,且a 1=1,a 2=1,于是2a 2=2,故当n ≥2时,na n =2×3n -2.于是a n ={1,n =1,2×3n -2n,n ≥2,n ∈N *.一、素养落地1.通过学习数列通项公式的求法,提升数学运算与逻辑推理素养.2.求数列通项的方法有:(1)公式法,(2)累加、累乘法,(3)构造法等,但总的思想是转化为特殊的数列(一般是等差或等比数列)求解.二、素养训练1.数列1,3,6,10,15,…的递推公式可能是( )A.a n ={1(n =1)a n +1+n -1(n ∈N *,n ≥2)B.a n={1(n =1)a n -1+n (n ∈N *,n ≥2)C.a n={1(n =1)a n -1+n -1(n ∈N *,n ≥2)D.a n={1(n =1)a n -1+n +1(n ∈N *,n ≥2)解析 由题意可得,a 1=1,a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,……∴a n -a n -1=n (n ≥2),故数列的递推公式为a n ={1(n =1)a n -1+n (n ∈N *,n ≥2)故选B.答案 B2.数列{a n }中,a 1=1,且a n +1=a n +2n ,则a 9=( )A.1 024B.1 023C.510D.511解析 由题意可得a n +1-a n =2n ,则a 9=a 1+(a 2-a 1)+(a 3-a 2)+…+(a 9-a 8)=1+21+22+…+28=29-1=511.故选D.答案 D3.已知数列{a n }的各项均为正数,且a 2n -a n -n 2-n =0,则a n=________.解析 由a 2n -a n -n (n +1)=0,得[a n -(n +1)](a n +n )=0.又a n >0,所以a n=n +1.答案 n +14.已知数列{a n }中,a 1=1,对于任意的n ≥2,n ∈N *,都有a 1a 2a 3…a n =n 2,则a 10=________.解析 由a 1a 2a 3…a n =n 2,得a 1a 2a 3…a n -1=(n -1)2(n ≥2),所以a n =n 2(n -1)2(n ≥2),所以a 10=10081.答案 100815.已知数列{a n }满足a 1=1,a n +1=a n a n +2(n ∈N *),求数列{a n }的通项公式.解 由a n +1=a n a n +2,得1a n +1=2an +1,所以1an +1+1=2(1a n+1).又a 1=1,所以1a 1+1=2,所以数列{1a n+1}是以2为首项,2为公比的等比数列,所以1a n +1=2×2n -1=2n ,所以a n =12n -1.基础达标一、选择题1.已知数列{a n }中,a 1=2,a n +1=a n +2n (n ∈N *),则a 100的值是( )A.9 900 B.9 902 C.9 904D.11 000解析 a 100=(a 100-a 99)+(a 99-a 98)+…+(a 2-a 1)+a 1=2(99+98+…+2+1)+2=2×99×(99+1)2+2=9 902.答案 B2.已知数列{a n }中,a 1=1,a n +1=a n1+2a n,则这个数列的第n 项为( )A.2n -1B.2n +1C.12n -1D.12n +1解析 ∵a n +1=a n 1+2an,a 1=1,∴1a n +1-1a n =2.∴{1a n}为等差数列,公差为2,首项1a1=1.∴1a n =1+(n -1)×2=2n -1,∴a n =12n -1.答案 C3.若数列{a n }中,a 1=3,a n +a n -1=4(n ≥2),则a 2 021的值为( )A.1 B.2 C.3D.4解析 ∵a 1=3,a n +a n -1=4(n ≥2),∴a n +1+a n =4,∴a n +1=a n -1,∴a n =a n +2,即奇数项、偶数项构成的数列均为常数列,又∵a 1=3,∴a 2 021=3.答案 C4.已知数列{a n }的首项为a 1=1,且满足a n +1=12a n +12n ,则此数列的通项公式a n 等于( )A.2nB.n (n +1)C.n2n -1D.n (n +1)2n解析 ∵a n +1=12a n +12n ,∴2n +1a n +1=2n a n +2,即2n +1a n +1-2n a n =2.又21a 1=2,∴数列{2n a n }是以2为首项,2为公差的等差数列,∴2n a n =2+(n -1)×2=2n ,∴a n =n 2n -1.答案 C5.已知数列{a n }的前n 项和为S n ,且a 1=2,S n +1=4a n +2,则a 12=( )A.20 480B.49 152C.60 152D.89 150解析 由题意得S 2=4a 1+2,所以a 1+a 2=4a 1+2,解得a 2=8,故a 2-2a 1=4,又a n +2=S n +2-S n +1=4a n +1-4a n ,于是a n +2-2a n +1=2(a n +1-2a n ),因此数列{a n +1-2a n }是以a 2-2a 1=4为首项,2为公比的等比数列,即a n +1-2a n =4×2n -1=2n +1,于是a n +12n +1-a n2n =1,因此数列{a n2n}是以1为首项,1为公差的等差数列,得a n2n =1+(n -1)=n ,即a n =n ·2n .所以a 12=12×212=49 152,故选B.答案 B 二、填空题6.在等比数列{a n }中,a 1,a 2,a 3分别是下表第一、二、三行中的某一个数,且a 1,a 2,a 3中的任何两个数不在下表的同一列.第一列第二列第三列第一行3210第二行6414第三行9818则数列{a n }的通项公式为________.解析 当a 1=3时,不合题意;当a 1=2时,当且仅当a 2=6,a 3=18时,符合题意;当a 1=10时,不合题意.因此a 1=2,a 2=6,a 3=18,所以公比q =3,故a n =2×3n -1.答案 a n =2×3n -17.在数列{a n }中,a 1=1,a n +1=n +1na n ,则数列{a n }的通项公式a n =________.解析 当n ≥2时,a n =a n a n -1·a n -1a n -2·…·a 3a 2·a 2a 1·a 1=nn -1·n -1n -2·…·32·21=n ,当n =1时,a 1=1也符合此式,∴a n =n .答案 n8.已知数列{a n }满足ln a 13·ln a 26·ln a 39·…·ln a n 3n =3n 2(n ∈N *),则a 10=________.解析 ∵ln a 13·ln a 26·ln a 39·…·ln a n 3n =3n2(n ∈N *),∴ln a 13·ln a 26·ln a 39·…·ln a n -13(n -1)=3(n -1)2(n ≥2),∴ln a n =3n 2n -1(n ≥2),∴a n =e 3n 2n -1(n ≥2),∴a 10=e 1003.答案 e1003三、解答题9.设f (x )=log 2x -log x 4(0<x <1),数列{a n }的通项a n 满足f (2a n )=2n ,求数列{a n }的通项公式.解 ∵f (x )=log 2x -log x 4(0<x <1),f (2an )=2n ,∴log 22an -log 2an 4=2n ,由换底公式得log 22an -log 24log 22an =2n ,即a n -2a n =2n ,∴a 2n -2na n -2=0,解得a n =n ±n 2+2.又0<x <1,∴0<2an <1,∴a n <0,∴a n =n -n 2+2,∴数列{a n }的通项公式是a n =n -n 2+2.10.设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式.解 (1)当n =1时,T 1=2S 1-1,因为T 1=S 1=a 1,所以a 1=2a 1-1,所以a 1=1.(2)当n ≥2时,T n -1=2S n -1-(n -1)2,则S n =T n -T n -1=2S n -n 2-[2S n -1-(n -1)2]=2(S n -S n -1)-2n +1=2a n -2n +1,因为当n =1时,a 1=S 1=1也满足上式,所以S n =2a n -2n +1(n ≥1),①当n ≥2时,S n -1=2a n -1-2(n -1)+1,②①-②,得a n =2a n -2a n -1-2,所以a n =2a n -1+2(n ≥2),所以a n +2=2·(a n -1+2),因为a 1+2=3≠0,所以数列{a n +2}是以3为首项,2为公比的等比数列,所以a n +2=3×2n -1,所以a n =3×2n -1-2.能力提升11.已知数列{a n }满足a 1=1,a 2=13,若a n (a n -1+2a n +1)=3a n -1·a n +1(n ≥2,n ∈N *),则数列{a n }的通项公式a n =________.解析 由题意知a n a n -1+2a n a n +1=3a n -1a n +1,∴1a n +1+2a n -1=3a n ,∴1a n +1-1a n =2(1a n -1a n -1),即1a n +1-1a n1a n -1a n -1=2,∴数列{1an +1-1a n}是首项为2,公比为2的等比数列,∴1a n +1-1a n =2×2n -1=2n .利用累加法,得1a 1+(1a 2-1a 1)+(1a 3-1a 2)+…+(1a n -1a n -1)=1+2+22+…+2n -1,即1a n =2n -12-1=2n -1,∴a n =12n -1.答案 12n -112.已知数列{a n }的前n 项和为S n ,且满足a 1=1,nS n +1-(n +1)S n =n (n +1)2,n ∈N *.(1)求数列{a n }的通项公式.(2)是否存在正整数k ,使a k ,S 2k ,a 4k 成等比数列?若存在,求k 的值;若不存在,请说明理由.解 (1)法一 由nS n +1-(n +1)S n =n (n +1)2,得S n +1n +1-S nn =12,∴数列{S nn}是首项为S 11=1,公差为12的等差数列,∴S nn =1+12(n -1)=12(n +1),∴S n =n (n +1)2.当n ≥2时,a n =S n -S n -1=n (n +1)2-(n -1)n2=n .而a 1=1适合上式,∴a n =n .法二 由nS n +1-(n +1)S n =n (n +1)2,得n (S n +1-S n )-S n =n (n +1)2,∴na n +1-S n =n (n +1)2.①当n ≥2时,(n -1)a n -S n -1=n (n -1)2,②①-②,得na n +1-(n -1)a n -a n =n (n +1)2-n (n -1)2,∴na n +1-na n =n ,∴a n +1-a n =1,∴数列{a n }是从第2项起的等差数列,且首项为a 2=2,公差为1,∴a n =2+(n -2)×1=n (n ≥2).而a 1=1适合上式,∴a n =n .(2)由(1),知a n =n ,S n =n (n +1)2.假设存在正整数k ,使a k ,S 2k ,a 4k 成等比数列,则S 22k =a k ·a 4k ,即[2k (2k +1)2]2=k ·4k .∵k 为正整数,∴(2k +1)2=4.得2k +1=2或2k +1=-2,解得k =12或k =-32,与k 为正整数矛盾.∴不存在正整数k ,使a k ,S 2k ,a 4k 成等比数列.创新猜想13.(多选题)已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且对于任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1),则( )A.a 9=17 B.a 10=18C.S 9=81D.S 10=91解析 ∵对于任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1),∴S n +1-S n =S n -S n -1+2,∴a n +1-a n =2.∴数列{a n }在n ≥2时是等差数列,公差为2.又a 1=1,a 2=2,则a 9=2+7×2=16,a 10=2+8×2=18,S 9=1+8×2+8×72×2=73,S 10=1+9×2+9×82×2=91.故选BD.答案 BD14.(多空题)设S n是数列{a n}的前n项和,且满足a2n+1=2a n S n,且a n>0,则S n=________,a100=________.解析 由S n是数列{a n}的前n项和,且满足a2n+1=2a n S n,则当n=1时,a21+1=2a1S1,即S21=1;当n≥2时,(S n-S n-1)2+1=2(S n-S n-1)S n,整理得S 2n-S2n-1=1.所以数列{S2n}是以1为首项,1为公差的等差数列,则S2n=n.由于a n>0,所以S n=n,故a100=S100-S99=100-99=10-311.答案 n 10-311。
数列的通项公式基础知识点1.数列的定义按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第一项(通常也叫做首项).2.数列的通项公式如果数列{a n}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.3.数列的递推公式如果已知数列{a n}的第一项(或前几项),且任何一项a n与它的前一项a n-1(或前几项)间的关系可以用一个式子来表示,即a n=f(a n-1)(或a n=f(a n-1,a n-2)等),那么这个式子叫做数列{a n}的递推公式.4.S n与a n的关系已知数列{a n}的前n项和为S n,则a n =⎩⎨⎧S1,n=1,Sn-S n-1,n≥2,这个关系式对任意数列均成立.5.由递推关系式求通项公式的常用方法(1)已知a1且a n-a n-1=f(n),可用“累加法”求a n.(2)已知a1且a nan-1=f(n),可用“累乘法”求a n.(3)已知a1且a n+1=qa n+b,则a n+1+k=q(a n+k)(其中k可由待定系数法确定),可转化为等比数列{a n+k}.(4)形如a n+1=AanBan+C(A,B,C为常数)的数列,可通过两边同时取倒数的方法构造新数列求解.基础题型训练:一.选择题(共10小题)1.已知数列…,则2是这个数列的()A.第6项 B.第7项 C.第11项 D.第19项2.已知数列{an }的前n项和,则a2•a6=()A. B. C.16 D.643.设数列{an }的前n项和为Sn,若Sn=2n﹣1(n∈N+),则a2018的值为()A.2 B.3 C.2018 D.40354.在等差数列{an }中,其前n项和为Sn,若a5,a7是方程x2+10x﹣16=0的两个根,那么S11的值为()A.44 B.﹣44 C.55 D.﹣55 5.无穷数列1,3,6,10…的通项公式为()A.an =n2﹣n+1 B.an=n2+n﹣1 C.an= D.an=6.在数列{an }中,a1=﹣1,a2=0,an+2=an+1+an,则a5等于()A.0 B.﹣1 C.﹣2 D.﹣37.数列{an }的前n项和Sn=2n2﹣3n(n∈N*),则a4等于()A.11 B.15 C.17 D.208.在数列{an }中,a1=1,an+1﹣an=2,则a51的值为()A.49 B.89 C.99 D.1019.若数列{an }由a1=2,an+1=an+2n(n≥1)确定,则a100的值为()A.9900 B.9902 C.9904 D.990610.已知数列{an }中,a1=1,an=3an﹣1+4(n∈N*且n≥2),则数列{an}通项公式an为()A.3n﹣1 B.3n+1﹣8 C.3n﹣2 D.3n 二.填空题(共4小题)11.已知数列{an }的前n项和为Sn,a1=1,an+1=2Sn(n∈N+),则数列{an}的通项公式an= .12.已知数列{an }的前n项和Sn=3+2n,则数列{an}的通项公式为.13.数列{an }满足an+1=3an+1,且a1=1,则数列{an}的通项公式an= .14.已知数列{an }是等差数列,Sn是其前n项和,且S12>0,S13<0,则使an<0成立的最小值n是.三.解答题(共1小题)15.设等差数列{an }的前n项和为Sn,已知a3=24,S11=0.(Ⅰ)求数列{an}的通项公式;(Ⅱ)求数列{an }的前n项和Sn;(Ⅲ)当n为何值时,Sn 最大,并求Sn的最大值.参考答案与试题解析一.选择题(共10小题)1.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项【解答】解:数列…,各项的平方为:2,5,8,11,…则an 2﹣an﹣12=3,又∵a12=2,∴an2=2+(n﹣1)×3=3n﹣1,令3n﹣1=20,则n=7.故选:B.2.已知数列{an }的前n项和,则a2•a6=()A.B.C.16 D.64【解答】解:∵数列{an}的前n项和,∴a2=S2﹣S1=(22﹣1)﹣(2﹣1)=4﹣2=2,a6=S6﹣S5=(26﹣1)﹣(25﹣)=64﹣32=32,则a2•a6=2×32=64,故选:D.3.设数列{an }的前n项和为Sn,若Sn=2n﹣1(n∈N+),则a2018的值为()A.2 B.3 C.2018 D.4035【解答】解:∵Sn =2n﹣1(n∈N+),则a2018=S2018﹣S2017=2×2018﹣1﹣(2×2017﹣1)=2.故选:A.4.在等差数列{an }中,其前n项和为Sn,若a5,a7是方程x2+10x﹣16=0的两个根,那么S11的值为()A.44 B.﹣44 C.55 D.﹣55【解答】解:∵a5,a7是方程x2+10x﹣16=0的两个根,∴a5+a7=﹣10,则S11====﹣55,故选:D.5.无穷数列1,3,6,10…的通项公式为()A.an =n2﹣n+1 B.an=n2+n﹣1 C.an=D.an=【解答】解:∵a2﹣a1=3﹣1=2,a 3﹣a2=6﹣3=3,a 4﹣a3=10﹣6=4,…∴an =a1+(a2﹣a1)+(a3﹣a2)+…+(an﹣an﹣1)=1+2+3+…+n=.故选:C.6.在数列{an }中,a1=﹣1,a2=0,an+2=an+1+an,则a5等于()A.0 B.﹣1 C.﹣2 D.﹣3【解答】解:数列{an }中,a1=﹣1,a2=0,an+2=an+1+an,a3=﹣1,a4=﹣1,则a5=﹣2.故选:C.7.数列{an }的前n项和Sn=2n2﹣3n(n∈N*),则a4等于()A.11 B.15 C.17 D.20【解答】解:a4=S4﹣S3=(2×16﹣3×4)﹣(2×9﹣3×3)=11.故选:A.8.在数列{an }中,a1=1,an+1﹣an=2,则a51的值为()A.49 B.89 C.99 D.101【解答】解:∵在数列{an }中,a1=1,an+1﹣an=2,∴数列{an }是首项为a1=1,公差为an+1﹣an=2的等差数列,∴an=1+2(n﹣1)=2n﹣1,∴a51=2×51﹣1=101.故选:D.9.若数列{an }由a1=2,an+1=an+2n(n≥1)确定,则a100的值为()A.9900 B.9902 C.9904 D.9906【解答】解:由题意可得,得an+1﹣an=2n所以a2﹣a1=2a3﹣a2=4…an ﹣an﹣1=2(n﹣1)把以上n﹣1个式子相加可得,an ﹣a1=2+4+6+…+2(n﹣1)=n(n﹣1)所以,an=n(n﹣1)+2则a100=9902故选:B.10.已知数列{an }中,a1=1,an=3an﹣1+4(n∈N*且n≥2),则数列{an}通项公式an为()A.3n﹣1 B.3n+1﹣8 C.3n﹣2 D.3n【解答】解:在an =3an﹣1+4两边同时加上2,得an+2=3an﹣1+6=3(an﹣1+2),根据等比数列的定义,数列{ an+2}是等比数列,且公比为3.以a1+2=3为首项.等比数列{ an +2}的通项an+2=3•3 n﹣1=3 n,移向得an=3n﹣2.故选:C.二.填空题(共4小题)11.已知数列{an }的前n项和为Sn,a1=1,an+1=2Sn(n∈N+),则数列{an}的通项公式an= .【解答】解:当n≥2时,an =2Sn﹣1,∴an+1﹣an=2Sn﹣2Sn﹣1=2an,即an+1=3an,∴数列{an }为等比数列,a2=2a1=2,公比为3,∴an=2•3n﹣2,当n=1时,a1=1∴数列{an}的通项公式为.故答案为:.12.已知数列{an }的前n项和Sn=3+2n,则数列{an}的通项公式为.【解答】解:由Sn=3+2n,当n=1时,a1=S1=5.当n≥2时,.所以.故答案为.13.数列{an }满足an+1=3an+1,且a1=1,则数列{an}的通项公式an= •(3n﹣1).【解答】解:∵an+1=3an+1,∴an+1+=3(an+),则数列{an +}是公比q=3的等比数列,首项a1+=1+=,则an+=•3n﹣1=•3n,则an=﹣+•3n=•(3n﹣1),故答案为:•(3n﹣1)14.已知数列{an }是等差数列,Sn是其前n项和,且S12>0,S13<0,则使an<0成立的最小值n是7 .【解答】解:∵S12>0,S13<0,∴>0,<0,∴a6+a7>0,a7<0,∴a6>0.则使an<0成立的最小值n是7.故答案为:7.三.解答题(共1小题)15.设等差数列{an }的前n项和为Sn,已知a3=24,S11=0.(Ⅰ)求数列{an}的通项公式;(Ⅱ)求数列{an }的前n项和Sn;(Ⅲ)当n为何值时,Sn 最大,并求Sn的最大值.【解答】解:(Ⅰ)依题意,∵a3=24,S11=0,∴a1+2d=24,a1+55d=0,解之得a1=40,d=﹣8,∴an=48﹣8n.(Ⅱ)由(Ⅰ)知,a1=40,an=48﹣8n,∴Sn==﹣4n2+44n.(Ⅲ)由(Ⅱ)有,Sn=﹣4n2+44n=﹣4(n﹣5.5)2+121,故当n=5或n=6时,Sn 最大,且Sn的最大值为120.。
由递推公式求的通项公式类型1叠加法:)(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。
例1:已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
解:由条件知:111)1(1121+-=+=+=-+n n n n n n a a n n分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累加之,即)()()()(1342312--+⋅⋅⋅⋅⋅⋅+-+-+-n n a a a a a a a a )111()4131()3121()211(nn --+⋅⋅⋅⋅⋅⋅+-+-+-=所以n a a n 111-=- 211=a ,nn a n 1231121-=-+=∴类型2累乘法:n n a n f a )(1=+解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。
例2:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。
解:由条件知11+=+n n a a n n ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累乘之,即 1342312-∙⋅⋅⋅⋅⋅⋅∙∙∙n n a a a a a a a a n n 1433221-⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯=n a a n 11=⇒又321=a ,na n 32=∴ (2004,全国I,理15.)已知数列{a n },满足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项1___n a ⎧=⎨⎩ 12n n =≥ 解:由已知,得n n n na a n a a a a +-+⋅⋅⋅+++=-+13211)1(32,用此式减去已知式,得当2≥n 时,n n n na a a =-+1,即n n a n a )1(1+=+,又112==a a ,n a a a a a a a a a n n =⋅⋅⋅====∴-13423121,,4,3,1,1,将以上n 个式子相乘,得2!n a n =)2(≥n 类型3(待定系数法)q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。
已知等比数列{an}的前n项和为Sn,且an是Sn与2的等差中项,等差数列{bn}中,b1=2,点P(bn,bn+1)在直线y=x+2上。
问题1:求a1和a2的值。
问题2:求数列{an}和{bn}的通项an和bn。
问题3:设Cn=an*bn,求数列{cn}的前n项和Tn。
(1)由题意可知:2an=Sn+2所以2a1=a1+2,a1=22a2=S2+2=a1+a2+2=4+a2,a2=4(2)2an=Sn+22a(n-1)=S(n-1)+2 (n》2)两式相减可得:2an-2a(n-1)=an,所以an=2a(n-1)所以其等比为2,又a2也满足条件,所以an=2^n(bn,bn+1)在直线y=x+2上,所以bn+1=bn+2,bn+1+bn=2,公差为2,所以bn=2+2(n-1)=2n(3)Cn=2n2^nTn=C1+C2+C3+……Cn-1+Cn=2*1*2+2*2*2^2+2*3*2^3……2*(n-1)*2^n=1*2^2+2*2^3+3*2^4+……(n-1)*2^n+n*2^(n+1) 所以Tn/2=1*2+2*2^2+3*2^3+……(n-1)*2^(n-1)+n*2^n两式相减可得:Tn/2=n*2^(n+1)-2-2^2-3^3-……2^n=n*2^(n+1)-[2+2^2+2^3+……2^n]=n*2^(n+1)-[2(1-2^n)/(1-2)]=n*2^(n+1)-[2^(n+1)-2]=(n-1)*2^(n+1)+2所以Tn=2[(n-1)*2^(n+1)+2]=(n-1)*2^(n+2)+4已知数列{an}满足a1=1,an+1=2an+1,求{an}的通项公式______.由题意知an+1=2an+1,则an+1+1=2an+1+1=2(an+1)∴an+1+1an+1=2,且a1+1=2,∴数列{an+1}是以2为首项,以2为公比的等比数列.则有an+1=2×2n-1=2n,∴an=2n-1.故答案为:an=2n-1.已知数列{an}的前n项和Sn=1+λan,其中λ≠0.(1)证明{an}是等比数列,并求其通项公式;(2)若S5=3132,求λ.解:(1)∵Sn=1+λan,λ≠0.∴an≠0.当n≥2时,an=Sn-Sn-1=1+λan-1-λan-1=λan-λan-1,即(λ-1)an=λan-1,∵λ≠0,an≠0.∴λ-1≠0.即λ≠1,即anan−1=λλ−1,(n≥2),∴{an}是等比数列,公比q=λλ−1,当n=1时,S1=1+λa1=a1,即a1=11−λ,∴an=11−λ•(λλ−1)n-1.(2)若S5=3132,则若S5=1+λ(11−λ•(λλ−1)4=3132,即(λ1−λ)5=3132-1=-132,则λ1−λ=-12,得λ=-1.如果等差数列{an},公差为d,则an=a1+(n-1)d,这就是等差数列{an}的通项公式。
已知数列{an}的首项为a(a≠0),前n项和为Sn,且有Sn+1=tSn+a (t≠0),bn=Sn+1.
已知数列{a n}的首项为a(a≠0),前n项和为S n,且有S n+1=tS n+a(t≠0),b n=S n+1.
(1)求数列{a n}的通项公式;
(2)当t=1时,若对任意n∈N*,都有|b n|≥|b5|,求a的取值范围;
(3)当t≠1时,若c n=2+
n
i=1
b i,求能够使数列{
c n}为等比数列的所有数对(a,t).
解题思路:(1)由数列递推式求得首项,得到a n+1=a n t,由此说明数列是等比数列,由等比数列的通项公式得答案;
(2)当t=1时,S n=na,b n=na+1,b n+1-b n=a,得到{b n}为等差数列.当a>0时,{b n}为单调递增数列,且对任意n∈N*,a n>0恒成立,不合题意.当a<0时,{b n}为单调递减数列,由题意知得b4>0,b6<0,结合|b n|≥|b5|去绝对值后求解a的取值范围;
(3)求出数列{a n}的前n项和S n,代入b n=S n+1求得b n,进一步代入c n=2+
n
i=1
b i,由等比数列通项的特点列式求得a,t的值.
(1)当n=1时,由S2=tS1+a,解得a2=at,
当n≥2时,S n=tS n-1+a,
∴S n+1-S n=t(S n-S n-1),即a n+1=a n t,
又∵a1=a≠0,
综上有
an+1
an=t(n∈N*),
∴{a n}是首项为a,公比为的等比数列,
∴an=atn−1;
(2)当t=1时,S n=na,b n=na+1,b n+1-b n=a,此时{b n}为等差数列;
当a>0时,{b n}为单调递增数列,且对任意n∈N*,a n>0恒成立,不合题意;当a<0时,{b n}为单调递减数列,由题意知得b4>0,b6<0,且有
b4≥|b5|
−b6≥|b5|,解得−
2
9≤a≤−
2
11.
综上a的取值范围是[−
2
9,−
2
11];
(3)∵t≠1,bn=1+
a
1−t−
atn
1−t,
∴cn=2+(1+
a
1−t)n−
a
1−t(t+t2+…+tn)
=2+(1+
a
1−t)n−
a(t−tn+1)
(1−t)2
=2−
at
(1−t)2+
1−t+a
1−tn+
atn+1
(1−t)2,
由题设知{c n}为等比数列,
∴有
点评:
本题考点:数列递推式;等比关系的确定.
考点点评:本题考查数列递推式,考查了等比关系的确定,考查了学生的计算能力,是中档题.。