第5章回归分析
- 格式:pps
- 大小:5.69 MB
- 文档页数:54
第5章自变量选择与逐步回归思考与练习参考答案5.1 自变量选择对回归参数的估计有何影响?答:回归自变量的选择是建立回归模型得一个极为重要的问题。
如果模型中丢掉了重要的自变量, 出现模型的设定偏误,这样模型容易出现异方差或自相关性,影响回归的效果;如果模型中增加了不必要的自变量, 或者数据质量很差的自变量, 不仅使得建模计算量增大, 自变量之间信息有重叠,而且得到的模型稳定性较差,影响回归模型的应用。
5.2自变量选择对回归预测有何影响?答:当全模型(m元)正确采用选模型(p元)时,我们舍弃了m-p个自变量,回归系数的最小二乘估计是全模型相应参数的有偏估计,使得用选模型的预测是有偏的,但由于选模型的参数估计、预测残差和预测均方误差具有较小的方差,所以全模型正确而误用选模型有利有弊。
当选模型(p元)正确采用全模型(m 元)时,全模型回归系数的最小二乘估计是相应参数的有偏估计,使得用模型的预测是有偏的,并且全模型的参数估计、预测残差和预测均方误差的方差都比选模型的大,所以回归自变量的选择应少而精。
5.3 如果所建模型主要用于预测,应该用哪个准则来衡量回归方程的优劣?C统计量达到最小的准则来衡量回答:如果所建模型主要用于预测,则应使用p归方程的优劣。
5.4 试述前进法的思想方法。
答:前进法的基本思想方法是:首先因变量Y对全部的自变量x1,x2,...,xm建立m个一元线性回归方程, 并计算F检验值,选择偏回归平方和显著的变量(F值最大且大于临界值)进入回归方程。
每一步只引入一个变量,同时建立m-1个二元线性回归方程,计算它们的F检验值,选择偏回归平方和显著的两变量变量(F值最大且大于临界值)进入回归方程。
在确定引入的两个自变量以后,再引入一个变量,建立m-2个三元线性回归方程,计算它们的F检验值,选择偏回归平方和显著的三个变量(F值最大)进入回归方程。
不断重复这一过程,直到无法再引入新的自变量时,即所有未被引入的自变量的F检验值均小于F检验临界值Fα(1,n-p-1),回归过程结束。
第五章相关分析与回归分析相关分析(Correlation Analysis)和回归分析(Regression Analysis)都是统计学中常用的数据分析方法,用于研究两个或多个变量之间的关系。
相关分析主要用于衡量变量之间的线性关系强度和方向,回归分析则是基于相关分析的基础上建立数学模型来预测或解释因变量的方法。
相关分析是一种用于研究两个变量之间关系强度和方向的统计方法。
相关系数是用来衡量两个变量之间相关关系强度的指标,其取值范围为[-1,1]。
当相关系数为正时,表示两个变量呈正相关,即随着一个变量增加,另一个变量也增加;当相关系数为负时,表示两个变量呈负相关,即随着一个变量增加,另一个变量减少;当相关系数接近于0时,表示两个变量之间关系弱或不存在。
常用的相关系数有皮尔逊相关系数(Pearson correlation coefficient)、斯皮尔曼相关系数(Spearman’s rank correlati on coefficient)和肯德尔相关系数(Kendall’s rank correlation coefficient)等。
皮尔逊相关系数适用于两个变量均为连续型的情况,斯皮尔曼和肯德尔相关系数则适用于至少一个变量为顺序型或等距型的情况。
回归分析是一种建立数学模型来预测或解释因变量的方法。
在回归分析中,通常将一个或多个自变量与一个因变量建立数学关系,然后通过该关系来预测或解释因变量。
回归分析可以分为简单回归分析和多元回归分析两种。
简单回归分析是指只有一个自变量和一个因变量之间的分析。
该方法主要用于研究一个自变量对因变量的影响,通过拟合一条直线来描述自变量和因变量之间的线性关系。
简单回归分析的核心是最小二乘法,即通过最小化误差平方和来确定最佳拟合直线。
多元回归分析是指有多个自变量和一个因变量之间的分析。
该方法主要用于研究多个自变量对因变量的影响,并建立一个多元线性回归模型来描述它们之间的关系。
第5章自变量选择与逐步回归思考与练习参考答案自变量选择对回归参数的估计有何影响答:回归自变量的选择是建立回归模型得一个极为重要的问题。
如果模型中丢掉了重要的自变量, 出现模型的设定偏误,这样模型容易出现异方差或自相关性,影响回归的效果;如果模型中增加了不必要的自变量, 或者数据质量很差的自变量, 不仅使得建模计算量增大, 自变量之间信息有重叠,而且得到的模型稳定性较差,影响回归模型的应用。
自变量选择对回归预测有何影响答:当全模型(m元)正确采用选模型(p元)时,我们舍弃了m-p个自变量,回归系数的最小二乘估计是全模型相应参数的有偏估计,使得用选模型的预测是有偏的,但由于选模型的参数估计、预测残差和预测均方误差具有较小的方差,所以全模型正确而误用选模型有利有弊。
当选模型(p元)正确采用全模型(m 元)时,全模型回归系数的最小二乘估计是相应参数的有偏估计,使得用模型的预测是有偏的,并且全模型的参数估计、预测残差和预测均方误差的方差都比选模型的大,所以回归自变量的选择应少而精。
如果所建模型主要用于预测,应该用哪个准则来衡量回归方程的优劣C统计量达到最小的准则来衡量回答:如果所建模型主要用于预测,则应使用p归方程的优劣。
试述前进法的思想方法。
答:前进法的基本思想方法是:首先因变量Y对全部的自变量x1,x2,...,xm建立m 个一元线性回归方程, 并计算F检验值,选择偏回归平方和显着的变量(F值最大且大于临界值)进入回归方程。
每一步只引入一个变量,同时建立m-1个二元线性回归方程,计算它们的F检验值,选择偏回归平方和显着的两变量变量(F 值最大且大于临界值)进入回归方程。
在确定引入的两个自变量以后,再引入一个变量,建立m-2个三元线性回归方程,计算它们的F检验值,选择偏回归平方和显着的三个变量(F值最大)进入回归方程。
不断重复这一过程,直到无法再引入新的自变量时,即所有未被引入的自变量的F检验值均小于F检验临界值Fα(1,n-p-1),回归过程结束。
第5章相关分析和回归分析作业答案1.当变量x按一定数值变化时,变量y也近似地按固定数值变化,这表明变量x和变量y之间存在着( 3 )①完全相关关系②复相关关系③直线相关关系④没有相关关系2.单位产品成本与其产量的相关:单位产品成本与单位产品原材料消耗量的相关( 2 )①前者是正相关,后者是负相关②前者是负相关,后者是正相关③两者都是正相关④两者都是负相关3.相关系数r的取值范围( 2 )①-∞<r<+∞②-1≤r≤+1③-I<r<1 ④0≤r≤+14.当所有观测值都落在回归直线y=a+bx上,则x 与y之间的相关系数( 4 )①r=O.②r=1 ③r=-1 ④IrI=15.相关分析与回归分析,在是否需要确定自变量和因变量的问题上( 1 )①前者无须确定,后者需要确定②前者需要确定,后者勿需确定③两者均需确定④两者都无需确定6.—元线性回归模型的参数有( 2 )①一个②两个③三个④三个以上7.直线相关系数的绝对值接近1时,说明两变量相关关系的密切程度是( 1 )①完全相关②微弱相关③无线性相关④高度相关8.年劳动生产率x(千元)和工人工资y(元)之间的回归方程为y=10+7Ox,这意味着年劳动生产率每提高1千元时,工人工资平均( 1 )①增加70元②减少70元③增加80元④减少80元9.下面的几个式子中,错误的是( 1,3 )①y=-40-1.6x r=0.89 (说明:正相关,x前面的系数应该为正值)②y=-5-3.8x r=-0.94③y=36-2.4x r=0.96④y=-36+3.8x r=0.9810.相关系数r与回归系数b的关系可以表达为( 1 )①r=b*σx/σy ②r=b*③r=b* ④r=b*11.下列关系中,属于正相关关系的有( 1 )①合理限度内,施肥量和平均单产量之间的关系②产品产量与单位产品成本之间的关系③商品的流通费用与销售利润之间的关系.④流通费用率与商品销售量之间的关系12.直线相关分析与直线回归分析的联系表现为( 1 )①相关分析是回归分析的基础②回归分析是相关分析的基础③相关分析是回归分析的深入④相关分析与回归分析互为条件13.如果估计标准误差Sy=O,则表明( 1 )①全部观测值和回归值都相等②回归值等于Y 、③全部观测值与回归值的离差之和为零④全部观测值都落在回归直线上14.进行相关分析,要求相关的两个变量( 1 )。
第二篇回归分析与相关分析第5章多元线性回归分析在现实地理系统中,任何事物的变化都是多种因素影响的结果,一因多果、一果多因、多果多因的情况比比皆是。
以全球变化为例,过去一直以为地球气候变暖是由于二氧化碳的温室效应造成,但近年来有人指出水蒸汽是更重要的影响因素,二氧化碳只不过是一个“帮凶”。
如果这种观点成立,则气候变暖至少有两个原因:水蒸汽和二氧化碳。
为了处理诸如此类一果多因的因果关系问题,我们需要掌握多元线性回归知识。
至于多果多因的情况,需要借助典型相关分析或者多元多重线性回归分析技术。
多元线性回归的最小二乘拟合思路与一元线性回归相似,但有关数学过程要复杂得多。
对于一元线性回归,F 检验、t检验都与相关系数检验等价;对应多元线性回归,F检验、t检验与相关系数检验没有关系,而且相关系数分析要麻烦多了。
为了简明起见,本章着重讲述二元线性回归分析。
至于三元以上,基本原理可以依此类推。
§5.1 因果关系与基本模型5.1.1 因果关系对于我们上一章讲到的实例,山上积雪深度影响山下灌溉面积。
如果灌溉面积单纯取决于山上的积雪量,这个问题就比较简单,它们之间构成通常意义的简单因果关系——一因一果关系。
在这种情况下进行回归分析、建立数学模型是有意义的。
另一类现象就是诸如街头的裙子和身边的蚊子之类,它们属于共同反应(common response),或者叫做共变反映,建立回归模型没有统计意义。
但是,这并不是说,研究共变现象就没有任何科学意义。
共同反应属于一因多果的问题,探查共同反应的现象有助于我们揭示事物发生的原因。
举个简单的例子,如果在某个山区发源了两条河流,分别流向不同的海洋。
两条河流不会相互影响。
如果在某段时期下游的观测记录表明两条河流的水位同时持续上涨,那就说明一个问题,河流发源的山区下雨或者积雪融化。
这类问题在地理研究中比比皆是。
由于地球的万事万物或多或少都要受到天体的影响,一些原本相对独立的地理事物表面上形成了数据的相关关系,深究之后才发现它们共同的根源在于天文因素。