第三章干涉装置和光场的时空相干性教程
- 格式:ppt
- 大小:2.88 MB
- 文档页数:104
光的干涉现象与空间相干性光的干涉现象是光学中的一个重要现象,它揭示了光波的波动性质和波动光学的基本原理。
而干涉现象的产生与光的空间相干性密切相关。
本文将从光的干涉现象和空间相干性两个方面进行探讨。
一、光的干涉现象光的干涉现象是指两束或多束光波相互叠加而产生的干涉条纹。
干涉现象的产生需要满足两个条件:一是光源必须是相干光源,即光源发出的光波的频率和相位保持稳定;二是光波必须是相干光波,即光波的相位关系满足一定条件。
在干涉现象的实验中,常用的装置有杨氏双缝干涉装置和迈克尔逊干涉仪。
杨氏双缝干涉装置由一块屏幕上有两个狭缝的光源和一个屏幕组成。
当光通过两个狭缝后,会形成一系列明暗相间的干涉条纹。
迈克尔逊干涉仪则是利用半反射镜和全反射镜的干涉效应来观察干涉条纹。
干涉现象的产生可以解释为光波的叠加效应。
当两束光波相遇时,它们的振幅会相互叠加,形成新的波面。
如果两束光波的相位差为整数倍的波长,它们的振幅将增强,形成明亮的干涉条纹;如果相位差为半波长的奇数倍,它们的振幅将相互抵消,形成暗淡的干涉条纹。
二、空间相干性空间相干性是指光波在空间上保持相位关系的性质。
在光学中,空间相干性是光的相干性的一种表现形式。
相干性是指两个或多个光波的相位关系保持稳定的性质。
空间相干性可以通过干涉实验来验证。
在干涉实验中,如果两束光波的相干时间长,它们的相位关系将保持稳定,干涉条纹将清晰可见;如果相干时间短,光波的相位关系将不稳定,干涉条纹将模糊不清。
空间相干性与光的波长和光源的发散性有关。
光的波长越短,空间相干性越好,干涉条纹越清晰;光源的发散性越小,空间相干性越好,干涉条纹越清晰。
因此,使用单色光源和点光源可以提高干涉实验的分辨率。
三、光的干涉现象与空间相干性的应用光的干涉现象和空间相干性在科学和技术领域有着广泛的应用。
其中最重要的应用之一是干涉测量技术。
干涉测量技术是一种非接触式的测量方法,可以精确测量物体的形状、表面粗糙度和位移等参数。
2023年《光学》(赵凯华钟锡华著)课后习题答案
下载
《光学》(赵凯华钟锡华著)内容简介
绪论
第一章几何光学
第二章波动光学基本原理
第三章干涉装置光场的时空相干性
第四章衍射光栅
第五章傅里叶变换光学
第六章全息照相
第七章光在晶体中的传播
第八章光的吸收、色散和散射
第九章光的量子性激光
《光学》(赵凯华钟锡华著)目录
《光学(上下)》分上、下两册。
上册主要内容:几何光学、波动光学基本原理、干涉装置和光场的`时空相干性。
下册主要内容:衍射光栅、傅里叶变换光学、全息照相、光在晶体中的传播、光的吸收、色散和散射、光的量子性和激光。
第三章干涉装置和光场的时空相干性第一课§3.1 分波前干涉装置光场的空间相干性本章将在第二章的基础上,具体讨论光的各种干涉装置和干涉仪,介绍光的干涉现象的一些实际应用。
与此同时,结合具体的干涉装置,阐明两个重要的概念—光场的空间相干性和时间相干性。
第二章中已述由于普通光源是不相干的,我们不能简单地由两个实际点光源或面光源的两个独立部分形成稳定的干涉场,为了保证相干条件,通常的办法是利用光具组将同一列波分解为二,使它们经过不同的路径后重新相遇。
由于这样得到的两个波列是由同一波列分解而来的,它们频率相同,位相差稳定,振动方向也可作到基本上平行,相干条件都得到满足,从而可以产生稳定的可观测的干涉场,分解波列的方法有:(1)分波前法:将点光源的波前分割为两部分,使之分别通过两个光具组,经衍射、反射或折射后交迭起来,在一定区域内产生干涉场。
杨氏实验是这类分波前干涉装置的典型。
(2)分振幅法:当一束光投射到两种透明媒质的分界面上时,光能一部分反射,一部分透射。
这种方法叫做分振幅法。
最简单的分振幅干涉装置是薄膜。
(3)分振动面法:利用晶体的双折射效应,使不同振动方向的光相干。
这种方法叫做分振动面法。
1. 杨氏干涉装置结构杨氏实验是分波前干涉装置的典Array型,或者说,它是下面将介绍的各种的分波前干涉装置的原型。
在杨氏实验中光具组Ⅰ,Ⅱ就是单孔屏和双孔屏(或者两条狭缝)。
光束1,2是靠衍射效应交迭起来的。
在下面的介绍中的几种装置中,光束1,2的交迭或靠反射,或靠折射形成。
2. 其他分波前干涉装置 (1)洛埃镜 如图所示,MN 是一平面反射镜,从狭缝光源S 发出的波列中的一部分掠入射到平面镜后反射到幕上,另一部分直接投射到幕上,在幕上两光束交迭区域里将出现干涉条纹。
设S' 为S 对平面镜所成的虚象,幕上干涉条纹就如同是实际光源S 和虚象光源 S'发出的光束产生的一样,因此条纹间隔的计算也可利用杨氏装置的结果。