时间相干性
- 格式:doc
- 大小:84.82 KB
- 文档页数:3
介绍光的极化和相干性现象光是一种波动现象,它在传播过程中常常会发生极化和相干性现象。
在这篇文章里,我将会向大家介绍一下关于光的极化和相干性的相关概念以及它们在实际应用中的作用。
一. 光的极化现象极化是指光波中的电磁波在某一特定方向上产生振动的现象。
当光在通过某些介质时,会发生极化现象。
这种现象可根据电磁波振动的方向进行分类。
一般来说,有两种主要的极化方式:线性极化和圆极化。
1. 线性极化线性极化是指电磁波振动沿着一个特定方向上的极化。
这个方向可以是任何方向。
当光通过一个线性极化器时,只有与它的方向成90度角的方向才能够透过去。
这种现象在太阳眼镜和3D电影中经常表现出来。
2. 圆极化圆极化是一种较为有趣的现象,它指的是电磁波沿着一个特定方向振动,成像一个螺旋状。
这种现象可以分为左旋和右旋。
这种现象在医学成像和光学工业中都有广泛的应用。
二. 光的相干性现象相干性是一种关于光波的强度和频率的概念。
当两个光波是相干的时,它们的波峰和波谷会以完美的对齐方式出现,形成一个稳定的波形。
这种现象在光学测量中常常被用来精确测量长度和重量。
1. 空间相干性空间相干性是指两个垂直放置的光源所产生的光波之间的相干性。
当这些光波相遇时,它们相互干涉,形成新的光相干波。
这种现象经常用于干涉测量和激光器的制造工业。
2. 时间相干性时间相干性是指同一个光源发射出的两个光波之间的相干性。
当这些光波相遇时,它们也会相互干涉,形成新的光相干波。
这种现象在数字通信和激光干涉仪等领域有着很广泛的应用。
总之,光的极化和相干性现象对于现代科技的发展和应用有着重要的作用。
通过深入了解其中的原理和特点,在实际工作中才能更好地应用这些现象,创造更多的新技术和新应用。
1.3 什么是时间相干性和空间相干性?怎样定义相干时间和相干长度?时间相干性:光场中同一空间点在不同时刻光波场之间的相干性,描述的是光束传播方向上的各点的相位关系,与光束单色性密切相关。
空间相干性:光场中不同的空间点在同一时刻的光场的相干性,描述的是垂直于光束传播方向的平面上各点之间的相位关系,与光束方向性密切相关。
相干时间t c,即光传播方向上某点处可以使不时刻光波场之间有相干性的最大时间间隔。
相干长度L c指的是可以使光传播方向上两个不同点处的光波场具有相干性的最大空间间隔。
二者实质上是相同的。
L c=t c∙c=C∆ν1.4 为使He-Ne激光器的相干长度达到1Km,它的单色性∆λ/λ0应是多少?L c=C∆ν⁄=1Km ∆ν=3×105Hz∆λλ0=∆νν0=∆νc∙λ0=6.328×10−112.3 如果激光器和微波激射器分别在λ=10μm、λ=500nm和ν=3000MHz输出1W连续功率,问每秒从激光上能级向下能级跃迁的粒子数是多少?W=Pt=nhν当λ=10μm时, ν=cλ=3×1013Hz n=5.03×1019当λ=500nm时,ν=cλ=6×1014Hz n=2.51×1018当ν=3000MHz时,n=5.03×10232.4 设一对激光能级为E2和E1(f2=f1),相应频率为ν(波长为λ),能级上的粒子数密度分别为n2和n1,求:(1)当ν=3000MHz,T=300K时n2n1⁄=?(2)当λ=1μm,T=300K时n2n1⁄=?(3)当λ=1μm,n2n1⁄=0.1时,温度T=?(1)E2−E1=hν=1.99×10−24 J k b=1.38×10−23J K⁄n2 n1=f2f1e−(E2−E1)k b T=0.9995(2)同理得n2n1⁄=1.4×10−21(3)同理得T =6.26×103K2.10 激光在0.2m 长的增益介质中往复运动的过程中,其强度增加了30%。
相干叠加的两光波必须满足的条件相干叠加是指两个或多个具有一致性相位关系的光波相互叠加产生新的光波。
相干叠加可以导致干涉现象的发生,从而产生许多重要的光学效应。
这里我们将讨论相干叠加的必要条件。
两个光波相干叠加的必要条件可以从两个方面来讨论,即时间相干性和空间相干性。
首先,我们来讨论时间相干性的条件。
时间相干性是指两个光波在时间上存在一致的相位关系。
要实现时间相干叠加,必须满足以下几个条件:1.光源的连续性:要实现相干叠加,光源必须是连续的,即光的强度在时间上是连续变化的。
如果光源是间断的或者是脉冲光源,就不能实现相干叠加。
2.光波的光谱宽度:光波的光谱宽度越窄,相干叠加的效果就越好。
这是因为光的频谱宽度越窄,相应的相位差就越小,相干叠加的条件就越容易满足。
3.光波的相干时间:光波的相干时间是指两个光波之间的相位一直保持一致的时间。
如果两个光波的相干时间越长,相干叠加的效果就越好。
相干时间可以通过光波的相干长度来衡量,相干长度越大,相干时间越长。
其次,我们来讨论空间相干性的条件。
空间相干性是指两个光波在空间上存在一致的相位关系。
要实现空间相干叠加,必须满足以下几个条件:1.频率一致性:两个光波的频率必须完全一致,即它们的波长必须相等。
如果两个光波的频率不一致,它们的相位将会随时间的变化而产生不一致的变化,无法实现一致的相位叠加。
2.方向一致性:两个光波必须具有相同的传播方向。
如果两个光波的传播方向不一致,它们的相位差将会随位置的变化而产生不一致的变化,无法实现一致的相位叠加。
3.空间相干面积:空间相干面积是指在这个面积内,两个光波之间的相位关系保持一致。
空间相干面积越大,相干叠加的效果越好。
空间相干面积与两个光波的波前的重叠程度有关,波前的重叠程度越高,空间相干面积越大。
最后,我们还可以提到一些其他的条件,如功率相干性、偏振一致性等。
总体来说,相干叠加的条件是相对严格的,需要满足许多相位关系和相干性的要求。
光波的时间相干性
摘要:该文介绍光的时间相干性的原理,并作了定量分析,得出了相干时间及相干波列长度与干涉条纹清晰度关系的结论。
关键词:相干时间相干长度
从一无限小的点光源发出无限长光波列,用光学方法将其分为两束,再实现同一波列的相遇叠加,得到稳定的干涉条纹,这样的光源称为相干光源。
我们知道,任何光源发射的光波只有在有限的空间范围内并且在一定的时间范围内才可以看作是稳定的。
即光源向外发射的是有限长的波列,而波列的长度是由原子发光的持续时间和传播速度确定的。
我们以杨氏干涉实验为例讨论,如图所示。
光源S发射一列波,被杨
b'
a"
b a
S
S'
S"
P
P'
a'
r
r
r'
r"
氏干涉装置分为两列波a'、a ",这两列波沿不同的路径r'、r "传播后,又重新相遇。
由于这两列波是从同一列光波分割出来,他们具有完全相同的频率和一定的相位关系,因此可以发生干涉,并可以观察到干涉条纹。
若两路的光程差太大,致使S'、S "到达考察点P 的光程差大于波列的长度,使得当波列a "刚到达P 点时,波列a'已经过去了,两列波不能相遇,当然无法发生干涉。
而另一发光时刻发出的波列b 经S'分割后的波列b'和a "相遇并叠加。
但由于a 和b 无固定的相位关系,因此在观察点无法发生干涉。
故干涉的必要条件是两列波在相遇点的光程差应小于波列的长度。
我们知道,λ
λλλδ∆≈∆+=2
max )(j 式中考虑到当λλ∆ ,该式表明,
光源的单色性决定产生干涉条纹的最大光程差,通常将max δ称为相干长度。
再由上述讨论可知,波列的长度至少应等于最大光程差,由上式
得波列的长度L 为λ
λδ∆==2
max L ,此式表明,波列的长度与光源的谱
线宽度成反比,即光源的谱线宽度λ∆就小,波列长度就长。
下表是几种光源的相干长度。
发光物质
)(o
A λ
)(o
A λ∆
L (m) a N
5893 ~0.1 ~3.4*210- g H 5460.73 ~0.1 ~3*210- r K
6057 ~0.0047 ~1.0 e e N H -激光
6328
~610-
~4*410
由波列的长度L 可以确定他通过点考察点所需的时间0t ∆, 即c
L t =
∆0 式中c 是光速。
对于确定的某一点,若前后两个时刻传来的光波隶属于同一列波则他们是相干波,称该光波具有时间相干性,否则为非相干波。
衡量光场时间相干性的好坏的是t ∆的长短,0t ∆称为相干时间,它是光通过相干长度所需的时间。
上述的讨论表明,光波场的时间相干性是和光源的单色性紧密相关的。
在干涉实验中,由于激光的单色性高,其时间相干性好,因此我们能观察到干涉级较高的条纹。