图解法、受力分析
- 格式:pptx
- 大小:246.64 KB
- 文档页数:15
解答共点力平衡问题的常用方法物体的平衡问题,涉及力的概念、受力分析、力的合成与分解、列方程运算等多方面数学、物理知识和能力的应用,是高考中的热点。
一、共点力平衡问题的数学解法1、相似三角形法:如果在对力利用平行四边形定则运算的过程中,力三角形与几何三角形相似,则可根据相似三角形对应边成比例等性质求解。
2、拉密定理若在共点的三个力作用下,物体处于平衡状态,则各力的大小分别与另外两个力夹角的正弦成正比。
3、正交分解法:共点力平衡条件F合=0是矢量方程,通常用正交分解法把矢量运算转化为标量运算,给解题带来方便。
4、函数图象法:利用函数图象分析和解答问题,关键是分析图象的物理意义,进行推理判断和计算。
二、共点力平衡问题的物理方法1、离法与整体法通常在分析外力对系统的作用时,用整体法:在分析系统内各物体间的相互作用时,用隔离法。
二者常需交叉运用,从而优化解题思路和方法,使解题简洁明了。
2、动态平衡问题———图解法利用图解法解决此类问题的基本方法是:对研究对象在状态变化过程中的若干状态进行受力分析,依据某一参量的变化,在同一图中作出物体在平衡状态下的平衡力图(力的平行四边形),再由动态的力的四边形各边长度变化及角度变化,确定力的大小及方向的变化情况,3、临界法:从量变到质变的转变状态,叫临界状态。
分析和解决临界问题,有两种基本方法:一是演绎法———从一般到特殊的推理方法;二是临界法———从特殊到一般的推理方法。
因为临界状态总是比一般状态简单,所以解决临界问题,临界法比演绎法简单。
一般,只要分清物理过程抓住临界状态,确定临界状态,建立临界方程,问题就迎刃而解了。
相互作用(二)受力分析专题特殊法判断。
4.如何防止“多力”或“丢力”(1) 防止“多力”的有效途径是找出力的施力物体,若某力有施力物体则它实际存在,无施力物体则它不存在。
另外合力与分力不要重复分析。
(2) 按正确的顺序(即一重、二弹、三摩擦、四其他)进行受力分析是保证不“丢力”的有效措施。
冲上粗糙的【典例2】如图所示,A、B两个物体的1 kg,现在它们在拉力对A、B分别画出完整的受力分析。
、B之间的摩擦力大小为多少。
B.3只分析外力。
【典例5】倾角θ=37°,质量知识点二正交分解法1. 力分解为两个相互垂直的分力的方法称为正交分解法。
例如将力F沿x和y两个方向分解,如图所示,则F x=F cos θF y=F sin θ多的力,也就是说需要向两坐标轴上投影分解的力少一些。
这样一来,计算也就方便一些,可以就是将物理问题的某些研究对象或某些过程、状态从系统或全过程中隔离出来进行研究的方知识点三【典例探究】【典例=5 N,f2=0,f3=5 N=5 N,f2=5 N,f3=0=0,f=5 N,f=5 N现行高考要求,物体受到往往是三个共点力问题,利】用绳是其它-1先减小,后增大 B.F 先减小后增大(B)F1个力中其中两个力是绳的拉力,由于是同一根点位置固定,A 端缓慢左移时,答案与解析1.【答案】A2.【答案】(1) 见规范解答图 (2) 0 (3) 4 N【解析】(1) 以A 为研究对象,A 受到重力、支持力作用;以B 为研究对象,B 受到重力、支持力、压力、拉力、地面对B 的滑动摩擦力作用;如图。
(2) 对A :由二力平衡可知A 、B 之间的摩擦力为0。
(3) 以A 、B 整体为研究对象,由于两物体一起做匀速直线运动,所以受力如图,水平方向上由二力平衡得拉力等于滑动摩擦力,即F =F f =μB 地F N B ,而F N B =G B +G A ,所以F =0.2×(1×10+1×10) N=4 N 。
动态平衡受力分析在有关物体平衡的问题中,有一类涉及动态平衡。
这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。
解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。
物体受到往往是三个共点力问题,利用三力平衡特点讨论动态平衡问题是力学中一个重点和难点。
基础知识必备方法一:三角形图解法特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。
方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。
然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。
【例1】如图所示,一个重力为G的匀质球放在光滑斜面上,斜面倾角为,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态.今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板对球的压力F N1和斜面对球的支持力F N2变化情况为()A.F N1、F N2都是先减小后增加B.F N2一直减小,F N1先增加后减小C.F N1先减小后增加,F N2一直减小D.F N1一直减小,F N2先减小后增加答案C【练习1】如图所示,小球被轻质细绳系着,斜吊着放在光滑劈面上,小球质量为m,斜面倾角为θ,向右缓慢推动劈一小段距离,在整个过程中()A.绳上张力先增大后减小B.绳上张力先减小后增大C.劈对小球支持力减小D.劈对小球支持力增大答案D方法二:相似三角形法。
特点:相似三角形法适用于物体所受的三个力中,一个力大小、方向不变,其它二个力的方向均发生变化,且三个力中没有二力保持垂直关系,但可以找到力构成的矢量三角形相似的几何三角形的问题原理:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。
工程力学中的力的分析方法工程力学是研究物体在力的作用下的平衡和运动规律的一门学科。
而力作为工程力学的核心概念之一,对于研究物体的运动以及结构的稳定性至关重要。
在工程力学中,有多种力的分析方法被广泛应用于解决各种力学问题。
本文将围绕这一主题介绍一些常见的力的分析方法。
一、受力分析法受力分析法是工程力学中最基本和常用的力的分析方法之一。
它主要通过分析物体所受到的外力和内力,确定物体所受力的大小、方向和作用点。
受力分析法的关键是建立力的平衡条件,即物体所受力的合力为零。
通过将物体分解为多个物体,分析每个物体所受的力和力矩,并应用平衡条件来求解未知力。
二、力的图解法力的图解法是一种直观的力的分析方法,利用图解的方法描述和分析力的大小和方向。
其核心思想是将力按一定比例画在力图上,通过力图上的几何关系和图形分析,求解力的大小、方向和作用点。
力的图解法常用于解决平衡问题,特别适用于具有多个力的复杂情况。
三、力的向量法力的向量法是一种用向量来描述和分析力的分析方法。
在力的向量法中,力被表示为具有大小和方向的箭头,箭头的长度表示力的大小,箭头的方向表示力的方向。
通过向量的代数运算,可以进行力的合成、分解和平衡的计算。
力的向量法常用于解决平面力系统和空间力系统的力学问题。
四、力的分解法力的分解法是将力分解为若干个互相垂直或平行的力,以便于进行力的分析和计算。
通过将力进行水平和垂直方向的分解,可以简化力的分析过程,求解未知力和力的合成。
力的分解法常用于解决斜面、梁和桁架等结构的力学问题。
五、力的刚体分析法力的刚体分析法是一种将物体整体看作刚体,并通过力的平衡条件对刚体进行力学分析的方法。
在力的刚体分析法中,物体被理想化为不受力作用的刚体,通过受力分析和力的平衡条件,求解物体上各个点的受力情况和力的大小、方向。
力的刚体分析法广泛应用于研究结构的稳定性和静力学问题。
综上所述,工程力学中的力的分析方法包括受力分析法、力的图解法、力的向量法、力的分解法和力的刚体分析法。
高一上物理共点力作用下的平衡专题及3种受力分析方法姓名:___________ 班级:___________一、物体受两个力平衡(即二力平衡),这两个力大小相等,方向相反。
二、如果物体受三个力平衡:(1)其中两个力的合力与第三个力等大反向则平衡。
(合成法)(分解法)(2)也可以分解第三个力,让被分解的这两个力与其余两个力分别抵消,则三个力就平衡。
(3)如果三个力首位依次相连可以组成一个封闭的三角形,则这三个力也是合力为零,即平衡。
这个方法称为三角形法,这个方法是最优的求静态平衡和动态平衡的方法。
(正交分解)(4)如果物体受三个或三个以上的力平衡,一般用正交分解法,建立直角坐标系时,尽量使更多的力落在坐标轴上,让后把不在坐标轴上的力分解到坐标轴上,如果最后x轴,y轴合力都分别为零,则物体整体合力为零,即平衡。
正交分解不用按力的效果分解。
三、静态平衡:1.(多选)如图所示,竖直放置的轻弹簧一端固定在地面上,另一端与斜面体P相连,P与斜放在其上固定的挡板MN接触且处于静止状态,则斜面体P此刻受到的外力的个数有可能是()A.2个B.3个C.4个D.5个2.(斜面上的物体所受摩擦力的问题要特别注意多解性)如图,斜面A放在水平地面上.物块B放在斜面上,有一水平力F作用在B上时,A、B均保持静止.A受到水平地面的静摩擦力为f1,B受到A的静摩擦力为f2,现使F逐渐增大,但仍使A、B处于静止状态,则()A.f1一定增大B.f1、f2都不一定增大C.f1、f2均增大D.f2一定增大3.一质量为m的物块恰好静止在倾角为θ的斜面上。
现对物块施加一个竖直向下的恒力F,如图所示。
则物块()A.仍处于静止状态B.沿斜面加速下滑C.受到的摩擦力不变D.受到的合外力增大4.如图所示,光滑半球形容器固定在水平面上,O为球心,一质量为m的小滑块,在水平力F的作用下静止于P点。
设滑块所受支持力为F N,OP与水平方向的夹角为θ.下列关系正确的是()A.F=mgsinθB.F=mgcosθC.F N=D.F N=mgtanθ5.如图,滑块A置于水平地面上,滑块B在一水平力作用下紧靠滑块A(A、B接触面竖直),此时A恰好不滑动,B刚好不下滑。
作受力分析题的方法一、选择方法1、如果是选择题或者是填空题,没有要求我们选择什么方法解答,那么我们就“简单”原则,选择尽量简单的方法,可以选择整体法、隔离法。
2、如果几个物体不具备使用整体法、隔离法的方法的话,我们就选择图解法:(1)相似三角形如果物体受三个力,首选相似三角形。
注意,这里说的相似是指力学三角形和几何三角形,也就是说,我们对物体进行受力分析,用力的示意图把物体所受的力画出来,让所画线段的长度与力的大小成比例,这样呈现在图上的几何三角形与力学三角形就相似了。
物体所受力的大小之间的数学关系(包括数值的比例、所夹角度)与呈现在图上的几何三角形几条边之间的关系是一致的、相对应的。
(2)正交分解法如果物体受力较多(多于三个),之间关系也比较复杂,也可以选择正交分解法,横向与纵向分别达到受力平衡的状态。
根据线段的长短表示力的大小,再根据几个力之间的夹角关系,把未知的力用已经的力乘以夹角的三角函数值,这样就能列出方程,导出几个力之间的关系式。
二、解题方法1、静态平衡:整个过程是静态的,不动的,就直接根据物体受力平衡,根据题的特点,选择上面适合的某种或者多种方法。
2、动态平衡:整个系统,有一个量或者是因素是动的,比如说将绳子向上移,或者是向下移,但是是缓慢移动,每一个时刻是平衡的。
这个时候,要注意,将不变的量找出来,将不变的量通过画图表示出来,然后根据变化,在已经的图形中进行画图分析,比如咱们卷子上的题目:A将A往下移,B保持不动分析:不是一个系统,单个物体,我们选择图解法,并且只有三个力,重力、两个绳子的拉力,我们选择相似三角形的这种图解法。
这是一个动态平衡的过程,我们确定出不变的量有重力的大小和方向,还有B的拉力方向,我们就作图,画一条竖直向下且长度固定的线段,然后再画一条水平向右的直线,并将初始位置的拉力的大致画出然后我们将其中的一个拉力进行移动,画出相似三角形,将水平拉力向下平移O A2 A1 A如图,随着A点向下移,在力学三角形中,A点的位置就由开始的A一直到A1、A2,即向左移,但是由于竖直方向的力的线段方向和长度不变,另外一个力保持水平方向不变,如此一来,只能使得两个力的线段都越来越短,即越来越小。
静力学解题方法3——图解法分析动态平衡问题题型特点:(1)物体受三个力。
(2)三个力中一个力是恒力,一个力的方向不变,由于第三个力的方向变化,而使该力和方向不变的力的大小发生变化,但二者合力不变。
解题思路:(1)明确研究对象。
(2)分析物体的受力。
(3)用力的合成或力的分解作平行四边形(也可简化为矢量三角形)。
(4)正确找出力的变化方向。
(5)根据有向线段的长度变化判断各个力的变化情况。
注意几点:(1)哪个是恒力,哪个是方向不变的力,哪个是方向变化的力。
(2)正确判断力的变化方向及方向变化的范围。
(3)力的方向在变化的过程中,力的大小是否存在极值问题。
【例1】如图2-4-2所示,两根等长的绳子AB和BC吊一重物静止,两根绳子与水平方向夹角均为60°.现保持绳子AB与水平方向的夹角不变,将绳子BC逐渐缓慢地变化到沿水平方向,在这一过程中,绳子BC的拉力变化情况是()A.增大B.先减小,后增大C.减小D.先增大,后减小解析:方法一:对力的处理(求合力)采用合成法,应用合力为零求解时采用图解法(画动态平行四边形法).作出力的平行四边形,如图甲所示.由图可看出,FBC先减小后增大.方法二:对力的处理(求合力)采用正交分解法,应用合力为零求解时采用解析法.如图乙所示,将F AB、FBC分别沿水平方向和竖直方向分解,由两方向合力为零分别列出:F AB cos 60°=FB C sin θ,F AB sin 60°+FB C cos θ=FB,联立解得FBC sin(30°+θ)=FB/2,显然,当θ=60°时,FBC最小,故当θ变大时,FBC先变小后变大.答案:B变式1-1如图2-4-3所示,轻杆的一端固定一光滑球体,杆的另一端O为自由转动轴,而球又搁置在光滑斜面上.若杆与墙面的夹角为β,斜面倾角为θ,开始时轻杆与竖直方向的夹角β<θ. 且θ+β<90°,则为使斜面能在光滑水平面上向右做匀速直线运动,在球体离开斜面之前,作用于斜面上的水平外力F的大小及轻杆受力T和地面对斜面的支持力N的大小变化情况是()A.F逐渐增大,T逐渐减小,F N逐渐减小B.F逐渐减小,T逐渐减小,F N逐渐增大C.F逐渐增大,T先减小后增大,F N逐渐增大D.F逐渐减小,T先减小后增大,F N逐渐减小解析:利用矢量三角形法对球体进行分析如图甲所示,可知T是先减小后增大.斜面对球的支持力F N′逐渐增大,对斜面受力分析如图乙所示,可知F=F N″sinθ,则F逐渐增大,水平面对斜面的支持力F N=G+F N″·cos θ,故F N逐渐增大.答案:C【例2】一轻杆BO,其O端用光滑铰链固定在竖直轻杆AO上,B端挂一重物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F拉住,如图2-4-4所示.现将细绳缓慢往左拉,使杆BO与杆AO间的夹角θ逐渐减小,则在此过程中,拉力F及杆BO所受压力F N 的大小变化情况是()A.F N先减小,后增大B.F N始终不变C.F先减小,后增大D.F始终不变解析:取BO杆的B端为研究对象,受到绳子拉力(大小为F)、BO杆的支持力F N和悬挂重物的绳子的拉力(大小为G)的作用,将F N与G合成,其合力与F等值反向,如图所示,得到一个力的三角形(如图中画斜线部分),此力的三角形与几何三角形OBA相似,可利用相似三角形对应边成比例来解.如图所示,力的三角形与几何三角形OBA相似,设AO高为H,BO长为L,绳长为l,则由对应边成比例可得,F N=G,F=G式中G、H、L均不变,l逐渐变小,所以可知F N不变,F逐渐变小.答案:B变式2-1如图2-4-5所示,两球A 、B 用劲度系数为k 1的轻弹簧相连,球B 用长为L 的细绳悬于O 点,球A 固定在O 点正下方,且点O 、A 之间的距离恰为L ,系统平衡时绳子所受的拉力为F 1.现把A 、B 间的弹簧换成劲度系数为k 2的轻弹簧,仍使系统平衡,此时绳子所受的拉力为F 2,则F 1与F 2的大小之间的关系为( )A .F 1>F 2B .F 1=F 2C .F 1<F 2D .无法确定解析:两球间放劲度系数为k 1的弹簧静止时,小球B 受力如右图所示,弹簧的弹力F 与小球的重力G 的合力与绳的拉力F 1等大反向,根据力的三角形与几何三角形相似得 ,由于OA 、OB 均恒为L ,因此F 1大小恒定,与弹簧的劲度系数无关,因此换用劲度系数为k 2的弹簧后绳的拉力F 2=F 1,B 正确.答案:B【例3】如图1-31所示,竖直墙壁上固定一点电荷Q,一个带同种电荷q 的小球P,用绝缘细线悬挂,由于两电荷之间的库仑斥力悬线偏离竖直方向θ角,现因小球所带电荷缓慢减少,试分析悬线拉力的大小如何变化?[析与解]:分析小球受力情况,知其受重力G ,线的拉力F T ,点电荷Q 的排斥力F 三力作用而平衡,用三角形定则作其受力图如图,当q 逐渐减小时,斥力逐渐减小,θ角逐渐减小,同时斥力F 的方向也在变化,用图解法不能判断F 的大小变化情况,但注意到G//OQ ,F T //OP ,F 沿QP 方向,所以力三角形跟几何三角形OPQ 相似,由对应边的比例关系有F T /G=OP /OQ ,即F T =OP .G/OQ 因OP 长、OQ 长、重力G 在过程中均不变,得悬线的拉力F T 大小不变。
第二章第3单元受力分析共点力的平衡(3)【学习目标】1、知道什么是动态平衡问题【教学内容】一、什么是动态平衡问题“动态平衡”是指物体所受力中的一局部力是变力,是动态力,力的大小或方向在持续变化,而物体仍时刻处于平衡状态所以叫动态平衡。
二、求解动态平衡问题的常用方法:1、函数表达式讨论法:通过对题目中力的求解,写出力关于某个物理量(常为θ)的变化关系,然后讨论变化规律【例1】如下图,一小球放置在木板与竖直墙面之间。
设墙面对球的压力大小为N1,球对木板的压力大小为N2。
以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。
不计摩擦,在此过程中()A.N1始终减小,N2始终增大B.N1始终减小,N2始终减小C.N1先增大后减小,N2始终减小D.N1先增大后减小,N2先减小后增大【例2】如下图,两根等长的绳子AB和BC吊一重物静止,两根绳子与水平方向夹角均为60°,现保持A端位置不变,将C端位置沿水平方向缓慢地向右移动,在这个过程中,绳子BC的拉力变化情况是()A.增大B.先减小,后增大C.减小D.先增大,后减小【变式训练1】如下图,在竖直放置的穹形光滑支架上,一根不可伸长的轻绳通过轻质滑轮悬挂一重物G.现将轻绳的一端固定于支架上的A点,另一端从B点沿支架缓慢地向C点靠近(C点与A点等高).则绳中拉力大小变化的情况是( )A.先变小后变大B.先变小后不变C.先变大后不变D.先变大后变小2、图解法:就是在对物体实行受力分析的基础上,根据平行四边形定则(或三角形定则)作出各力的方向和大小,并进一步分析力的变化情况的方法。
【例3】如下图,一小球在斜面上处于静止状态,不考虑一切摩擦,假如把竖直挡板由竖直位置缓慢绕O点转至水平位置,则此过程中球对挡板的压力F1和球对斜面的压力F2的变化情况是()A.B球对斜面的压力不变B .A 球对挡板的压力逐渐减小C .A 、B 两球间的弹力逐渐增大D .A 球对斜面的压力逐渐减小【变式训练2】如下图,质量均为m 的小球A 、B 用两根不可伸长的轻绳连接后悬挂于O 点,在外力F 的作用下,小球A 、B处于静止状态。