空间角的求法
- 格式:pdf
- 大小:600.70 KB
- 文档页数:7
2023年高考数学----空间角问题规律方法与典型例题讲解【规律方法】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的. (3)计算:在证明的基础上计算得出结果. 简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin hl,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°. 4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【典型例题】例19.(2022·浙江金华·高三期末)已知正方体1111ABCD A B C D −中,P 为1ACD △内一点,且1113PB D ACD S S =△△,设直线PD 与11AC 所成的角为θ,则cos θ的取值范围为( )A .⎡⎢⎣⎦B .⎤⎥⎣⎦C .10,2⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦【答案】C【解析】如图1,设1B D 与平面1ACD 相交于点E ,连接BD 交AC 于点O ,连接11B D , ∵1BB ⊥平面ABCD ,AC ⊂平面ABCD ,则1BB AC ⊥,AC BD ⊥,1BD BB B ⋂=,1,BD BB ⊂平面11BDD B∴AC ⊥平面11BDD B ,由1B D ⊂平面11BDD B ,则1AC B D ⊥, 同理可证:11AD B D ⊥, 1AD AC A =,1,AD AC ⊂平面1ACD ,∴1B D ⊥平面1ACD ,∵111111AC AD CD AB B D B C =====,由正三棱锥的性质可得:E 为1ACD △的中心, 连接1OD ,∵O 为AC 的中点,∴1OD 交1B D 于点E ,连接PE ,由1B D ⊥平面1ACD ,PE ⊂平面1ACD ,则1B D PE ⊥,即PE 是1PB D 的高,设AB a =,PE d =,则1,B D AC =,且1ACD △的内切圆半径r OE ==,则1112PB D S B D PE =⋅=△,))1212ACD S =⨯=△,∵1113PB DACD S S =△△213=,则13d a r =<, ∴点P 的轨迹是以E 为圆心,13a 为半径的圆.∵1B D ⊥平面1ACD ,1OD ⊂平面1ACD ,则11B D OD ⊥,∴DE , 故PD 为底面半径为13a,高为=DE 的圆锥的母线,如图2所示,设圆锥的母线与底面所成的角α,则3tan 13a α== 所以π3α=,即直线PD 与平面1ACD 所成的角为π3. 直线AC 在平面1ACD 内,所以直线PD 与直线AC 所成角的取值范围为ππ,32⎡⎤⎢⎥⎣⎦,因为11AC AC ∥,所以直线PD 与直线11AC 所成角的取值范围为ππ,32⎡⎤⎢⎥⎣⎦,即ππ,32θ⎡⎤∈⎢⎥⎣⎦, 所以10cos 2θ≤≤. 故选:C.例20.(2022·浙江·效实中学模拟预测)在等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,AC 交BD 于O 点,ABD △沿着直线BD 翻折成1A BD ,所成二面角1A BD C −−的大小为θ,则下列选项中错误的是( )A .1A BC θ∠≤B .1AOC θ∠≥ C .1A DC θ∠≤ D .11A BC A DC θ∠+∠≥【答案】C【解析】等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,可知:30,ACB ACD BD DC ∠=∠=⊥取BD 中点N ,BC 中点M 连接1,A N NM ,则1A N BD ⊥,NM BC ⊥,所以1A NM ∠为 二面角1A BD C −−的平面角,即1A NM θ∠=设122AB AD CD BC ====,则1111,1,2,2A N MN A B A D ==== 2222211111111cos 1222A N NM A M A M A M A N NM θ+−+−∴===−⋅,2222222111111221cos 122228A B BM A M A M A BC A M A B BM +−+−∴∠===−⋅⨯⨯,因为在[]0,π上余弦函数单调递减,又2211111111cos cos 82A M A M A BC A BC θθ−≥−⇒∠≥⇒∠≤,故A 对. 2222222111111221cos 122228A D DC AC AC A DC AC A D CD +−+−∴∠===−⋅⨯⨯222122221111153cos 2416AC AO OC AC AOC AC AO OC +−+−∴∠===−⋅ 当0θ=时,1A 与M 重合,此时160A DC ∠=,故C 不对. 1A DC ∠在翻折的过程中,角度从120减少到60 1AOC ∠在翻折的过程中,角度从180减少到30BD 选项根据图形特征及空间关系,可知正确.. 故选:C例21.(2022·浙江·湖州中学高三阶段练习)如图,ABC 中,90C ∠=︒,1AC =,BC D 为AB 边上的中点,点M 在线段BD (不含端点)上,将BCM 沿CM 向上折起至'B CM △,设平面'B CM 与平面ACM 所成锐二面角为α,直线'MB 与平面AMC 所成角为β,直线MC 与平面'B CA 所成角为γ,则在翻折过程中,下列三个命题中正确的是( )①tan βα,②γβ≤,③γα>. A .① B .①② C .②③ D .①③【答案】B 【解析】如图,设直线BN 与直线CM 垂直相交于点N ,在折叠图里,线段B T '与平面ACM 垂直相交于点T ,,(0,30)BCM θθ∠=∈,由图像知:;B NT B MT αβ''∠=∠=,B N BN θ==', ()sin ;/sin 30B T B M θαθθ=*='︒+',cos NT θα*,()tan 60MN θθ=*︒−,()()2sin 30CM θ=︒+,①tan β==,tan β=≤≤,所以tan βα;② ()Δ1sin 902ACM S CM CA θ=*︒−= 设ACB δ∠'=,则()()()2cos cos cos 90sin sin 90cos cos 0.5sin2δθθθθααθ=*︒−+*︒−=*,Δsin ACB S δ'== 由ΔΔ1133ACM M ACB ACB B T S d S −''**=**',得M ACB d −'=()sin sin 30sin M ACB d B TMC B M γβθα'−====︒+*'',则()()sin sin 2tan 21sin 2sin 30cos 22sin 30γθθβθθθ=≤=≤︒+︒+, 由sin sin γβ≤得γβ≤; ③sin sin sin γγα=⇒,则sin sin 2tan 2sin 2cos 22γθθαθ≤=<sin γα<,所以sin sin γα<,则γα<.故选:B例22.(2022·浙江·高三专题练习)已知等边ABC ,点,E F 分别是边,AB AC 上的动点,且满足EF BC ∥,将AEF △沿着EF 翻折至P 点处,如图所示,记二面角P EF B −−的平面角为α,二面角P FC B −−的平面角为β,直线PF 与平面EFCB 所成角为γ,则( )A .αβγ≥≥B .αγβ≥≥C .βαγ≥≥D .βγα≥≥【答案】A【解析】在等边ABC 中,取BC 边中点D ,连接AD ,交EF 于O ,连接PO , 则,EF PO EF DO ⊥⊥,=PO DO O ⋂,PO ⊂平面POD ,DO ⊂平面POD 故EF ⊥平面POD ,又EF ⊂平面EFCB ,则平面POD ⊥平面EFCB 在POD 中,过P 做PM 垂直于OD 于M ,则PM ⊥平面EFCB ,连接MF , 在等边ABC 中,过M 做MN 垂直于AC 于N ,连接PN.由,EF PO EF DO ⊥⊥,则POM ∠为二面角P EF B −−的平面角即POM α∠=, 由PM ⊥平面EFCB ,MN AC ⊥,则PNM ∠为二面角P FC B −−的平面角即PNM β?由PM ⊥平面EFCB ,则PFM ∠直线PF 与平面EFCB 所成角,即PFM γ?,设AO ,则PO ,=FO a ,sin PM α,cos MO αFM ,)1=cos (1cos )2MN αα+=+, 则有FM OM >,FM NM >由cos MO MN α-(1cos )(cos 1)0αα-+=-<可得MO MN <,则有FM MN OM >>,则111FM MN OM<< 又tan tan ,tan PM PM PMOM NM FMαβγ,=== 故tan tan tan αβγ>>,又0,2παβγ⎛⎫∈ ⎪⎝⎭、、故αβγ>> 故选:A例23.(2022·全国·高三专题练习)设三棱锥V ABC −的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B −−的平面角是γ则三个角α,β,γ中最小的角是( ) A .α B .β C .γD .不能确定【答案】B【解析】如图,取BC 的中点 D ,作VO ⊥平面ABC 于点O , 由题意知点O 在AD 上,且AO =2OD .作PE //AC ,PE 交VC 于点E ,作PF ⊥AD 于点F ,连接BF ,则PF ⊥平面ABC 取AC 的中点M ,连接BM ,VM ,VM 交 PE 于点H , 连接BH ,易知BH ⊥PE , 作于点G ,连接FG ,由PG ⊥AC ,PF ⊥AC ,PG PF =P ,由线面垂直判定定理可得AC ⊥平面PGF ,又FG ⊂平面PGF ∴ FG ⊥AC , 作FN ⊥BM 于点N . ∵ PG ∥VM ,PF ∥VN∴ 平面PGF ∥平面VMB , 又 PH ∥FN , 四边形PFNH 为平行四边形, 所以PH =FN因此,直线PB 与直线AC 所成的角=BPE α∠, 直线PB 与平面ABC 所成的角PBF β=∠, 二面角P -AC -B 的平面角PGF γ=∠, 又cos cos PH FN BFPB PB PBαβ==<=又,[0,]2παβ∈,∴ αβ> 因为 tan =tan PF PFGF BF γβ>= ,(0,)2πβγ∈∴ γβ>综上所述,,,αβγ中最小角为β,故选 B.。
空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。
空间角是线线成角、线面成角、面面成角的总称。
其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。
下面举例说明。
一、异面直线所成的角:例1如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,12AA =。
E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。
求直线1EC 与1FD 所成的角的余弦值。
思路一:本题易于建立空间直角坐标系,把1EC 与1FD 所成角看作向量EC 1与FD 的夹角,用向量法求解。
思路二:平移线段C 1E 让C 1与D 1重合。
转化为平面角,放到三角形中,用几何法求解。
(图1)解法一:以A 为原点,1AB AD AA 、、分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有 D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2),于是11(1,3,2),(4,2,2)EC FD ==-设EC 1与FD 1所成的角为β,则:112222221121cos 14132(4)22EC FD EC FD β⋅===⋅++⨯-++ ∴直线1EC 与1FD 所成的角的余弦值为2114解法二:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。
则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。
空间角的求法一、异面直线所成角的求法平移法常见三种平移方式:直接平移;中位线平移(尤其是图中显现了中点):补形平移法。
“补形法”是立体几何中一种常见的方式,通过补形,可将问题转化为易于研究的几何体来处置,利用"补形法”找两异面直线所成的角也是经常使用的方式之一。
(1)直接平移法4、伍例1如图,PA丄矩形ABCD,已知PA=AB=8,BCJ0,求AD与PC所成角的正切值。
(尊)(2)中位线平移法:构造三角形找中位线,然后利用中位线的性质,将异面宜线所成的角转化为平面问题,解三角形求之。
例2设S是正三角形ABC所在平面外的一点,SA=SB=SC,且Z ASB= Z BSC= Z CSA= y , M、N别离是AB和SC的中点,求异面直线SM与BN所成的角的余弦值。
(巧)(3)补形平移法:在已知图形外补作一个相同的几何体,以利于找出平行线。
例3在正方体ABCD -中,E是CC】的中点,求直线AC与EDi所成角的余弦值。
(竺)A ______ G ____二、线而角的兰种求法1 •直接法:平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。
一般是解由斜线段,垂线段, 斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它能够起到联系各线段的作用。
例1四面体ABCS 中,SA, SB, SC 两两垂直,ZSBA=45°, ZSBC=60°, M 为AB 的中点,求:(1) BC 与 平面SAB 所成的角;(60。
) (2) SC 与平面ABC 所成的角。
(冷-)(“垂线”是相对的,SC 是面SAB 的垂线,又是面ABC 的斜线。
作面的垂线常依照面面垂直的性质定理,其 思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。
)2•利用公式sinO = *:其中&是斜线与平面所成的角,力是垂线段的长,/是斜线段的长,其中求出垂线段的 长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。
空间几何中的角度与距离计算在空间几何中,角度与距离的计算是非常重要的。
通过正确计算角度和距离,我们能够准确描述和分析物体的位置、运动以及相互关系。
本文将介绍空间几何中常用的角度计算方法和距离计算方法。
一、角度计算在空间几何中,角度是表示物体之间相对方向关系的重要指标。
常见的角度计算方法有以下几种:1. 余弦定理余弦定理是计算三角形内角的常用方法之一。
在空间几何中,如果已知三点的坐标,可以通过余弦定理计算出这三个点所形成的夹角。
余弦定理的公式如下:cos A = (b² + c² - a²) / (2bc)其中,A为夹角的大小,a、b、c为夹角对应的边长。
2. 矢量法矢量法是一种基于向量运算的角度计算方法。
通过将空间中的两个向量进行运算,可以得到它们之间的夹角。
常见的向量法角度计算包括点乘法和叉乘法。
(1)点乘法:两个向量的点乘结果等于它们的模长相乘再乘以它们之间的夹角的余弦值。
可以通过点乘法计算向量之间的夹角。
(2)叉乘法:两个向量的叉乘结果等于它们的模长相乘再乘以它们之间的夹角的正弦值。
可以通过叉乘法计算向量之间的夹角。
3. 三角函数在空间几何中,三角函数也是用于角度计算的常用方法之一。
通过正弦、余弦和正切等三角函数的运算,可以计算出角度的大小。
三角函数的计算方法需要先将坐标系进行转换,然后根据坐标的数值,利用相应的三角函数公式进行计算。
二、距离计算在空间几何中,距离是表示物体之间远近程度的重要指标。
常见的距离计算方法有以下几种:1. 欧几里得距离欧几里得距离是空间几何中最常用的距离计算方法。
对于二维或三维空间中的两个点,欧几里得距离可以通过计算它们在各坐标轴上的差值的平方和再开方的方式得到。
欧几里得距离的公式如下:d = √[(x₂-x₁)² + (y₂-y₁)² + (z₂-z₁)²]其中,d为距离,(x₁, y₁, z₁)和(x₂, y₂, z₂)分别为两个点的坐标。
空间角的几何求法一、 异面直线所成角(线线角)范围:(0,]2πθ∈先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得。
【典例分析】例1. 已知多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,AC = AD = CD = DE = 2,AB = 1,F 为CD 的中点. (1)求证:AF ⊥平面CDE ; (2)求异面直线AC ,BE 所成角余弦值;【变式】在长方体中,,,则异面直线与所成角的余弦值为。
二、直线与平面所成角(线面角)范围:[0,]2πθ∈【典例分析】例1.如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.【变式】如图,四边形ABCD 是正方形,PB ⊥平面ABCD ,MA//PB ,PB=AB=2MA , (1)证明:AC//平面PMD ;(2)求直线BD 与平面PCD 所成的角的大小;1111ABCD A B C D -1AB BC ==13AA =1AD 1DB例2. 如图所示,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA=AD=CD=2AB=2, M 为PC 的中点。
(1)求证:BM∥平面PAD ;(2)在侧面PAD 内找一点N ,使MN ⊥平面PBD ; (3)求直线PC 与平面PBD 所成角的正弦。
【变式】如图,在三棱锥V ABC -中,VC ABC ⊥底面,AC BC ⊥,D 是AB 的中点,且AC BC a ==,π02VDC θθ⎛⎫=<< ⎪⎝⎭∠.(1)求证:平面VAB ⊥平面VCD ;(2)试确定角θ的值,使得直线BC 与平面VAB 所成的角为π6.三、平面与平面所成角(面面角)范围:[0,]θπ∈(1)定义法:当点A 在二面角α- -β的棱 上时,可过A 分别在α、β内作棱 的垂线,AB 、AC ,由定义可知∠BAC 即为二面角α- -β的平面角。
在高中的空间几何学习中,常见的几何形状包括点、线、面、体等,涉及到各种角的计算。
以下是一些常见的角的公式:
1. 平面内的角:
-顶点在圆心的圆心角和半圆角:圆心角等于对应的圆周角,半圆角为180度。
-对顶角:对顶角相等。
-同位角:同位角相等。
-内错角和内错角互补:内错角之和等于180度,内错角互补。
2. 空间内的角:
-平行线与截线:平行线与截线的对应角相等。
-直线与平面:直线与平面的夹角等于其倾斜角。
-平面与平面:两平面的夹角等于它们法向量的夹角。
3. 立体几何中的角:
-直线与立体的交角:直线与平面或立体的夹角等于90度减去它们的夹角余补角。
-两平面之间的夹角:两平面的夹角是它们的法线之间的夹角。
这些公式是空间几何中常见的角度计算原则,通过理解和掌握这些规律,可以更好地解决空间几何题目中涉及到的各种角度问题。
PCDBA 空间角的求法空间角,能比较集中反映空间想象能力的要求,历来为高考命题者垂青,几乎年年必考。
空间角是异面直线所成的角、直线与平面所成的角及二面角总称。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三计算。
异面直线所成的角的范围:090θ<≤ (一)平移法【例1】已知四边形ABCD 为直角梯形,//AD BC ,90ABC ∠=,PA ⊥平面AC ,且2BC =,1PA AD AB ===,求异面直线PC 与BD 所成角的余弦值的大小。
【解】过点C 作//CE BD 交AD 的延长线于E ,连结PE,则PC 与BD 所成的角为PCE ∠或它的补角。
CEBD ==PE=∴由余弦定理得 222cos 2PC CE PE PCE PC CE +-∠==⋅∴PC 与BD 所成角的余弦值为63 (二)补形法【变式练习】已知正三棱柱111ABC A B C -的底面边长为8,侧棱长为6,D 为AC 中点。
求异面直线1AB与1BC 所成角的余弦值。
【答案】125A 1C 1CBAB 1 DCP二、直线与平面所成角直线与平面所成角的范围:090θ≤≤ 方法:射影转化法(关键是作垂线,找射影)【例2】如图,在三棱锥P ABC -中,90APB ∠=,60PAB ∠=,AB BC CA ==,点P 在平面ABC内的射影O 在AB 上,求直线PC 与平面ABC 所成的角的大小。
【解】连接OC ,由已知,OCP ∠为直线PC 与平面ABC 所成角设AB 的中点为D ,连接,PD CD 。
AB BC CA ==,所以CD AB ⊥90,60APB PAB ∠=∠=,所以PAD ∆为等边三角形。
不妨设2PA =,则1,3,4OD OP AB ===2223,13CD OC OD CD ∴==+=在Rt OCP ∆中,339tan 13OP OCP OC ∠===【变式练习1】如图,四棱锥S ABCD -中,//AB CD ,BC CD ⊥,侧面SAB 为等边三角形。
学立体几何是中学数学的主要内容之一,而空间角的求解则是立体几何中对空间思维和运算能力要求较高的内容,也是每年高考的必考内容.立体几何中的空间角主要包括异面直线所成的角、直线与平面所成的角、二面角三大类.本文就这三类空间角的具体求法进行简单分析,供同学们复习时参考.一、异面直线所成的角的求法1.平移法例1如图1所示,ABC—A1B1C1是直三棱柱,∠BCA=π2,点D1,F1分别是A1B1和A1C1的中点,若BC=CA=CC1,则BD1与AF1所成角的余弦值是(A)30"10(B)12(C)30"15(D)15"10解析:构建平行线将异面直线所成的角转化成平面角.∵D1,F1分别是A1B1和A1C1的中点,∴D1F1∥B1C1,D1F1=12B1C1.取BC的中点M,连接BD1,MF1.∵D1F1平行且等于12B1C1,BM平行且等于12B1C1,∴BM平行且等于D1F1,∴BMF1D1是平行四边形,MF1∥BD1.连接MA,显然∠MF1A是异面直线BD1和AF1所成的角.设BC=CA=CC1=1,则AM2=1+14=54,MF12=BD12=1+2%2&’2=32,AF12=1+14=54,∴cos∠MF1A=江山中学王陆军空间角的法求图1A1F1C1D1B1BAMC54+32-542×32!×54!=30!10.∴答案选A.2.补形法例2同例1.解析:如图2所示,将三棱柱ABC—A1B1C1补成四棱柱ABEC—A1B1E1C1.取B1E1的中点M,连接BM,D1M,D1B,显然MB∥AF1,∴∠MBD1是异面直线BD1和AF1所成的角.解△MBD1即可解决本题.3.向量法例3同例1.解析:同例1,以C为原点,CA为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,如图3所示.则点A(1,0,0),B(0,1,0),D112,12,%&1,F112,0,%&1,∴BD1=12,-12,%&1,AF1=-12,0,%&1,∴cos〈BD1,AF1〉=-14+0+15!2×6!2=30!10.4.三垂线定理法例4正三棱锥V—ABC中,D,E,F分别是VC,VA,AC的中点,P为VB上的一点,如图4所示,则直线DE与PF所成角的大小是(A)π6(B)π3(C)π2(D)π解析:当用平移法和补形法求解异面直线所成的角有困难时,可以考虑用三垂线定理法.如果一条异面直线在另一条异面直线所在平面的射影与该异面直线垂直,则问题就可迎刃而解.对于正三棱锥V—ABC,显然PF在底面的射影总在BF上,由于BF⊥AC,因此PF⊥AC.又∵DE∥AC,∴PF⊥DE.故答案选C.图2图4A1EMAF1D1E1BB1ACC1EBFDVPC学图3AF1C1B1D1A1CzxyB!’&#&"&&&!&#*()"二、直线与平面所成的角的求法1.定义法例5在正三棱柱ABC—A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,若AD与平面AC1所成的角为α,则α等于(A)π3(B)π4(C)arcsin10!4(D)arcsin6!4解析:如图5所示,分别取AC,A1C1的中点N,M,连接MN,BN.在MN上取一点E,使NE=1.∵ABC—A1B1C1为正三棱柱,∴BN⊥平面AC1.连接AE,ED.∵ED∥BN,∴ED⊥平面AC1,∴EA为AD在平面AC1上的射影,∴∠DAE为DA与平面AC1所成的角,即为α.在Rt△ADE中,sinα=6!4,∴α=arcsin6!4,∴答案选D.2.特殊公式法例6正三棱锥P—ABC的棱长都相等,M是AB中点,如图6所示.则PA与CM所成的角是(A)arccos3!6(B)arccos3!4(C)arccos3!3(D)30°解析:设正三棱锥的棱长为a,过点A作AD∥CM,∴PA与CM所成的角即为PA与AD所成的角∠DAP,且有∠DAM=90°.再取BC中点E,连接AE,PE.显然∠PAE是AP与底面ABC所成的角.在△PAE中,cos∠PAE=AP2+AE2-PE22AP·AE=3!3,∠DAE=∠DAC+∠CAE=30°+30°=60°.由cos∠DAP=cos∠PAE·cos∠DAE,得cos∠DAP=3!3×cos60°=3!3×12=3!6,故∠DAP=arccos3!6.答案选A.3.向量法例7如图7所示,在棱长为1的图5图6AMDC1A1B1BMACDPEBCNE&#""!!$!!!!&#$(’"学#%’正方体ABCD—A1B1C1D1中,P是侧棱上的一点,CP=m.(1)试确定m,使直线AP与平面BDD1B1所成角的正切值为32!;(2)在线段A1C1上是否存在一定点Q,使得对任意的m,D1Q在平面APD1上的射影垂直于AP,并加以证明.解析:(1)以D为原点,建立如图8所示的空间直角坐标系,连接D1P,D1A,AP,AC,DB.则点A(1,0,0),B(1,1,0),P(0,1,m),C(0,1,0),D(0,0,0),B1(1,1,1),D1(0,0,1).∴BD=(-1,-1,0),BB1=(0,0,1),AP=(-1,1,m),AC=(-1,1,0).又∵AC·BD=0,AC·BB1=0,∴AC为平面BDD1B1的一个法向量.再设AP与平面BDD1B1所成的角为θ,则sinθ=cosπ2-"θ由题意得22!·2+m2!=tanθ1+(tanθ)2!=32!1+(32!)2!,解得m=13.∴当m=13时,直线AP与平面BDD1B1所成的角的正切值为32!.(2)若在A1C1上存在这样的点Q,设此点的横坐标为x,则Q(x,1-x,1),D1Q=(x,1-x,0).依题意,若对任意的m要使D1Q在平面APD1上的射影垂直于AP,则由三垂线定理可知其等价于D1Q⊥AP,∴AP·D1Q=0,∴-x+(1-x)=0,∴x=12,即存在定点Q,且当其为A1C1的中点时,满足题设要求.三、二面角的求法1.定义法例8如图9所示,正三棱柱ABC—A1B1C1的底面边长为3,侧棱AA1=33!2,D是CB延长线上的一点,且BD=BC,求二面角B1-AD-BA1BCPAC1D1B1DyA1BCDAC1D1B1学图7z图8!!"#$!#!$!"!!!"#%!#!$!"!$,*ZP的大小.解析:在棱AD上任取一点E,使得DE=1.作EF⊥AD,EH⊥AD,分别交DB1,DB于点F,H,则∠FEH为二面角B1-AD-B的平面角,连接FH.由题设条件可知∠ADB=30°,∠DAC=90°,∴EH=3#3.∵DB1=AB1=AB2+BB12#=37#2,AD=33#,∴EF=DE·tan∠ADB1=23#3,DH=EH2+ED2#=23#3,DF=DE2+EF2#=21#3,cos∠BDB1=BDB1D=27#7.∴HF=DH2+DF2-2DH·DF·cos∠BDB1#=1,cos∠HEF=EF2+EH2-HF22EF·EH=12.故二面角B1-AD-B的大小为60°.2.三垂线法例9三棱锥P—ABC中,侧面PAC与底面ABC垂直,PA=PB=PC=3,如图10所示.(1)求证AB⊥BC;(2)如果AB=BC=23#,求侧面PBC与侧面PAC所成二面角的大小.解析:(1)取AC的中点D,连接PD,BD.∵PA=PC,∴PD⊥AC.又已知平面PAC⊥平面ABC,∴PD⊥平面ABC,D为垂足.∵PA=PB=PC,∴DA=DB=DC,故可得AC为△ABC外接圆的直径,∴AB⊥BC.(2)∵AB=BC=23#,D为AC中点,∴BD⊥AC.又∵平面PAC⊥平面ABC,∴BD⊥平面PAC,D为垂足.作BE⊥PC于E,连接DE.∵DE为BE在平面PAC内的射影,∴DE⊥PC,∴∠BED为所求二面角的平面角.在Rt△ABC中,AB=BC=23#,∴BD=6#.在Rt△PDC中,PC=3,DC=6#,PD=3#,∴DE=PD·DCPC=3#×6#3=2#.∴在Rt△BDE9A1BCFAC1B1HEPABCDE学图10图)!"&($!("&"%#D)!&("#中,tan∠BED=6"2"=3",∴∠BED=60°,即侧面PBC与侧面PAC所成的二面角为60°.3.垂面法在已知的二面角α-l-β中,作棱l的垂面γ,设γ∩α=OA,γ∩β=OB,则∠AOB为二面角α-l-β的平面角.例10如图11所示,已知四棱锥P—ABCD的底面是正方形,PA⊥底面ABCD,AE⊥PD,EF∥CD,AM=EF.(1)证明:MF是异面直线AB与PC的公垂线;(2)若PA=3AB,求二面角E-AB-D的平面角的正弦值.解析:(1)∵PA⊥平面ABCD,∴PA⊥AB.又∵AB⊥AD,∴AB⊥平面PAD,故可得AB⊥AE.∵AM∥CD∥EF,且AM=EF,AM⊥AE,∴四边形AEFM为矩形,∴AM⊥MF.又∵AE⊥EF,AE⊥PD,∴AE⊥平面PEF.而AE∥MF,∴MF⊥平面PEF,∴MF⊥PC,∴MF是AB与PC的公垂线.(2)由(1)可知平面PAD垂直于二面角E-AB-D的棱AB,且平面ME∩平面PAD=AE,平面AC∩平面PAD=AD,则∠EAD为二面角E-AB-D的平面角.设AB=a,则AP=3a.由Rt△AED∽Rt△PAD,可得∠EAD=∠APD.∴sin∠EAD=sin∠APD=ADPD=aa2+(3a)2"=10"10.4.公式法例11如图12所示,在正方体AC1中,E是BC中点,求二面角D1-B1E-C1的大小.解析:D1在平面B1ECC1的射影为C1,则△D1B1E在平面B1BCC1上的射影为△B1EC1.若设正方体棱长为2,则可得B1E=5",D1B1=22",D1E=3,S△BCE=2,S△DBE=3,∴cosθ=S△BCES△DBE=图12学BC11PEDAFM-’图))%"$(./-’$’)-)(()$)"图13C1CBFB1AA1D1EDyxz"23,∴θ=arccos23.5.向量法例12如图13所示,在长方体ABCD—A1B1C1D1中,已知AB=4,AD=3,AA1=2.E,F分别是线段AB,BC上的点,且EB=FB=1.求二面角C-DE-C1的正切值.解析:以A为原点,AB,AD和AA1分别为x轴,y轴和z轴的正方向建立空间直角坐标系,则有点D(0,3,0),D1(0,3,2),E(3,0,0),F(4,1,0),C1(4,3,2).于是可得DE=(3,-3,0),EC1=(1,3,2),FD1=(-4,2,2).若设向量n=(x,y,z)与平面C1DE垂直,则可得:n⊥n⊥$%3x-3y=0x+3y+2z=$0%x=y=-12z.∴n=-z2,-z2,&’z=z2(-1,-1,2),其中z>0.若取n0=(-1,-1,2),则n0是与平面C1DE垂直的向量.∵向量AA1与平面CDE垂直,∴n0与AA1所成的角θ就是二面角C-DE-C1.∵cosθ=n0·|n|·||=-1×0-1×0+2×21+1+4(×0+0+4(=6(3,∴tanθ=2(2,∴二面角C-DE-C1的正切值为2(2.DEEC1AA1AA1!!!"#"!$$!%!&%学’()"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"!!!!!!!!!!!!!!!!"放下松一散步一位胖太太在街上散步,有个陌生的小男孩紧紧地跟着她。