有限元分析及应用报告-利用ANSYS软件分析带孔悬臂梁
- 格式:docx
- 大小:822.35 KB
- 文档页数:15
1 研究目的与问题阐述1.1 基本研究目的(1) 掌握ANSYS软件的基本几何形体构造、网格划分、边界条件施加等方法。
(2) 熟悉有限元建模、求解及结果分析步骤和方法。
(3) 利用ANSYS软件对梁结构进行有限元计算。
(4) 研究不同泊松比对同一位置应力的影响。
1.2 基本问题提出图1.1 模型示意图如图1.1所示,当EX=3.01e6,F=5000N,悬臂梁杆一端固定,另一端为自由端。
当悬臂梁的泊松比u为:0.2、0.25、0.3、0.35、0.4时,确定同一位置的应力分布,得出分布云图。
采用二维模型,3*0.09m。
2 软件知识学习2.1 软件的使用与介绍软件介绍:ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。
由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数CAD软件接口,实现数据的共享和交换,如Pro/Engineer, NASTRAN, Alogor, I-DEAS, AutoCAD等,是现代产品设计中的高级CAE工具之一。
ANSYS有限元软件包是一个多用途的有限元法计算机设计程序,可以用来求解结构、流体、电力、电磁场及碰撞等问题。
因此它可应用于以下工业领域:航空航天、汽车工业、生物医学、桥梁、建筑、电子产品、重型机械、微机电系统、运动器械等。
软件主要包括三个部分:前处理模块,分析计算模块和后处理模块。
前处理模块提供了一个强大的实体建模及网格划分工具,用户可以方便地构造有限元模型;分析计算模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力;后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。
ansys实验报告ANSYS实验报告一、引言ANSYS是一款广泛应用于工程领域的有限元分析软件,它能够模拟和分析各种结构和物理现象。
本实验旨在通过使用ANSYS软件,对一个具体的工程问题进行模拟和分析,以探究其性能和行为。
二、实验目的本次实验的主要目的是通过ANSYS软件对一个简单的悬臂梁进行分析,研究其在不同加载条件下的应力和变形情况,并进一步了解悬臂梁的力学行为。
三、实验步骤1. 准备工作:安装并启动ANSYS软件,并导入悬臂梁的几何模型。
2. 材料定义:选择适当的材料,并设置其力学性质,如弹性模量和泊松比。
3. 约束条件:定义悬臂梁的边界条件,包括支撑点和加载点。
4. 加载条件:施加适当的力或压力到加载点,模拟实际工程中的加载情况。
5. 分析模型:选择适当的分析方法,如静力学分析或模态分析,对悬臂梁进行计算。
6. 结果分析:根据计算结果,分析悬臂梁在不同加载条件下的应力和变形情况,并进行比较和讨论。
四、实验结果经过计算和分析,我们得到了悬臂梁在不同加载条件下的应力和变形情况。
在静力学分析中,我们观察到加载点附近的应力集中现象,并且应力随着加载的增加而增大。
在模态分析中,我们研究了悬臂梁的固有频率和振型,并发现了一些共振现象。
五、讨论与分析根据实验结果,我们可以得出一些结论和讨论。
首先,悬臂梁在加载点附近容易发生应力集中,这可能导致结构的破坏和失效。
因此,在实际工程中,我们需要采取适当的措施来减轻应力集中的影响,如增加结构的刚度或改变加载方式。
其次,悬臂梁的固有频率和振型对结构的稳定性和动态响应有重要影响。
通过模态分析,我们可以确定悬臂梁的主要振动模态,并根据需要进行结构优化。
六、结论通过本次实验,我们成功地使用ANSYS软件对一个悬臂梁进行了模拟和分析。
通过对悬臂梁的应力和变形情况的研究,我们深入了解了悬臂梁的力学行为,并得出了一些有价值的结论和讨论。
在实际工程中,这些研究结果可以为设计和优化结构提供参考和指导。
悬臂梁优化分析班级:姓名:学号:指导老师:目录一、条件分析 (1)二、分析步骤 (1)(一)前处理阶段: (1)(二)求解阶段 (3)(三)后处理阶段 (4)(四)优化阶段 (9)三、优化结果 (13)(一)读取优化结果列表 (13)(二)选择优化结果 (13)(三)代入结果分析 (14)四、整理命令流 (14)参考文献 (17)一、条件分析由题可知:悬臂梁中的平均应力小于MPa 30,且梁的挠度小于1厘米。
而且横截面积约束条件为:cm X cm 2.1651≤≤,cm X cm 2.41202≤≤。
(考虑学号系数),连杆的材料属性为:杨氏模量Pa E 91012.30⨯=,泊松比为0.3。
由于梁的长度一定,若要使梁的重量最小,则要求体积最小,进而可知要求横截面积,所以可确定体积是所求目标,因此可确定:设计变量cm X cm 2.1651≤≤ cm X cm 2.41202≤≤状态变量平均应力MPa 30≤σ 挠度cm 1<δ目标函数体积V二、分析步骤1. 定义工作文件名和工作标题(1) 执行[Utility Menu]\File\change Jobname 。
弹出对话框,输入panjiafeng12,并选择复选框,单击“OK ”按钮。
(2) 执行[Utility Menu]\File\Change Title 。
弹出的对话框,输入panjiafeng12,单击“OK ”按钮。
(一)前处理阶段:1. 初始化设计变量执行[Utility Menu]\File\Parameters\Scalar Parameter,弹出对话框,输入X1=0.1cm ,X2=0.3cm 。
2.定义单元类型,面积,转动惯量执行[Utility Menu]\Preprocessor\Element Type\Add\Edit\Delete 弹出对话框,选择Structural Beam 中的2D elastic 3 单击“OK ”单击“Close ”。
问题描述:悬臂梁承载示意图如图所示,q=1N/mm2,厚度t=1mm,E=2.1E5N/mm2,u=0.3。
受均布载荷作用的悬臂梁有限元分析求解过程:1.定义工作文件名和工作标题1)选择Utility Menu︱File︱Change Jobname命令,出现Change Jobname对话框,在[/FILNAM]Enter new jobname文本框中输入工作文件名plate,并将New log and error files 设置为Yes,单击OK 按钮关闭该对话框。
2)选择Utility Menu︱File︱Change Title命令,出现Change Title对话框,在[/TITLE]Enter new title文本框中输入plate,单击OK按钮关闭该对话框。
2.定义单元类型1)选择Main Menu︱Preprocessor︱Element Type︱Add/Edit/Delete命令,出现Element Types对话框,单击Add按钮,出现Library of Element Types对话框。
在Library of Element Types列表框中选择Solid,4node 42,在Element type reference number文本框中输入1,如图所示,单击OK按钮关闭该对话框。
定义板厚:单机Options...|select K3:Plane Strs w/thk|OK,如图所示。
3.定义材料性能参数1)选择Main Menu︱Preprocessor︱Material Props︱Material Models命令,出现Define Material Model Behavior对话框。
2)在Material Models Available一栏中依次单击Structural、Linear、Elastic、Isotropic选项(如图3.5所示),出现Linear Isotropic Properties for Material Number 1对话框,在EX文本框中输入2.1E5,在PRXY文本框中输入0.3,如图所示,单击OK按钮关闭该对话框。
有限元分析及应用报告题目:利用ANSY软件分析带孔悬臂梁姓名:xxx学号:xxx班级:机械xxx学院: 机械学院指导老师:xxx二零一五年一月问题概述图示为一隧道断面,其内受均布水压力q,外受土壤均布压力p;试采用不同单元计算断面内的位移及应力,并分别分析q=0或p=0时的位移和应力分布情况。
(材料为钢,隧道几何尺寸和压力大小自行确定)本例假定内圆半径为1m,外圆半径为2m,外受均布压力p=10000pa ,内受均布压力为q=20000pa 。
问题分析由题目可知,隧道的的长度尺寸远远大于截面尺寸,并且压力在长度方向上均匀分布,因此本问题可以看作为平面应变问题。
由于在一个截面内,压力沿截面四周均匀分布,且截面是对称的圆环,所以可以只取截面1/4进行有限元建模分析,这样不仅简化了建模分析过程,也能保证得到精确的结果。
由以上分析,可以选取单元类型plane42进行有限元分析,在option中选择K3 为plane strain。
三.有限元建模1.设置计算类型由问题分析可知本问题属于平面静应力问题,所以选择preferences 为structure 。
2.单元类型选定选取平面四节点常应变单元plane42,来计算分析隧道截面的位移和应力。
由于此问题为平面应变问题,在设置element type的K3时将其设置为plane strain。
3.材料参数隧道的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比(T =0.34.几何建模按照题目所给尺寸利用ansys的modeling依次建立keypoint :1(0,0),2(1,0),3(2,0),4(0,2),5(0,1) , create LINES 依次连接keypoint 2、3和4、5即可创建两条直线,使用create article 的By cent & radius 创建两条圆弧。
create AREAS依次选择四条线即建立了所需的1/4截面。
5.网格划分ANSYSJAN 12 201510:45:05划分网格时,拾取四条边进行Size Control ,设定NDIV为20;选择网格划分方式为quad和Mapped下图3-1是单元类型为plane42的有限元网格模型。
图3-1 plane 42 网格,400个单元,441个节点数6.定义约束和载荷由于本例所取的为1/4截面,所以约束为水平变UY垂直边为UX。
设置约束方法为点击displayment拾取水平边UY约束,垂直边UX约束。
施加载荷分别作用在内圆弧和外圆弧上,大小分别为20000pa和10000pa。
点击pressure后选择相应边并输入载荷大小即可。
三.计算求解在划分网格施加载荷和约束后,点击 solution 的solve 即可进行 计算求解,结果分析时主要关注最大位移、最大应力及其位置,应力 分析采用等效应力 von mises stress 。
1. p=10000pa, q=20000pa 。
r£ng12 2DL5LOs&BsQB图4-1受载变形图,最大位移0.06um图4-1节点位移云图,最大位移0.06um图4-3等效应力分布云图,最大应力在内圆附近为 22892.9pa2. p=0pa, q=20000pa 。
1NOOAL SOLUTLOM ANSYSSTEP-1 SUB -1 TIME-1USUMRSY5*0IMt 逊d -.£60£-07 •・£24£-0B -d «€DE -D7JMJ 1.2 2015(K7GJ .403^0^图4-4受载变形图,最大位移0.18um图4-5节点位移云图,最大位移0.18um图4-6等效应力分布云图,最大应力在内圆附近为45615pa3. p=10000pa,q=0pa。
ANSYS SIB -1TI«=tlUK >.ll€£-O£图4-7受载变形图,最大位移0.11um图4-8节点位移云图,最大位移位于内圆附近0.11um图4-3等效应力分布云图,最大应力在内圆附近为 23415pa4.将以上三组分析结果整理成数据表h, IbEA 1MOQaZ. SCL3T 二CK=.116£-06 =1S53.&4=2^415,41131^5537.531B23Ul€501,51477313DH.3 SI£P=15U5 -1 TIME=1SE27UR. SMSMX ANSYSIIllfiE-Ofi 104E-0I6 11€E -OfiNODAL SOLUTIONJAM 12 201512:04:21104E-06U07E-06*109E-06.112E-06.114E-06-106E-06.108E-D6.111E-0®.113E-0®-116E-06四.结果分析由以上各图和数据表可知,(1)在不同的载荷情况下,最大位移和最大应力均分布在内圆附近,因此可以得出结论,在圆环型隧道不管受内外压力分布如何,总是在内部的应力和变形最大。
(2)由三组分析对比可知,在内外均分布有压力时,变形和内部应力相对较小,而只有一边受载的情况下,变形和应力相对增大。
五.结论和体会1. 在解决一个实际工程应用问题中,学会根据索要研究的对象,利用对称、载荷均布等条件简化模型,再进行建模分析。
2. 利用size control 进行网格划分尺寸和单元数控制,利用mapped方法进行划分网格,能使网格的形态更加合适使得到的结果更准确。
六.附录(操作步骤)1进入ANSYS2设置计算类型ANS YS Main Menu: Prefere nee—select Structural — OK3选择单元类型ANSYS Main Menu: Preprocessor —Element Type —Add/Edit/Delete … T Add…1 T select PLANE4A OK T(back to Element Types window) T option T K3 select plane strain T O K T Close (the Eleme nt Type wi ndow)4定义材料参数ANS YS Main Me nu: Preprocesso T Material Props T Material Models T Structural T Lin ear T Elastic T Isotropic T in putEX:2.1e11, PRXY:0.T OK5建立几何模型生成keypointANSYS Main Menu: Preprocesso T Modeling T Create TKeypo ints T In Active CS T依次输入三个点的坐标:in put:1(0,0),2(1,0),3(2,0) ,4(0,2),5(0,1) T OK生成直线straight lineANSYS Main Menu: Preprocesso T Modeling T Create T Lines T lines T Straight lines T分别连接2、3 和4、5T OK生成圆弧ArcsANSYS Main Menu: Preprocesso T Modeling T Create T Lines T Arcs^ By Cent &Radiu T拾取1 (0,0) apply T3 ( 1,0)T select T 90T apply T拾取1 (0,0) apply T4 ( 2,0)T select T90T OK生成areaANSYS Main Menu: Preprocesso T Modeling T Create T Areas T by lines r分别连接四段线T OKANSYS126网格划分ANSYS Main Menu: Preprocesso今Meshing 宀Mesh Attributes 宀Picked areas —03 MAT[1],T YPE[1 PLANE42]ANS YS Main Menu: Preprocesso r Meshi ng — Mesh Too—(Size Con trols) lin es: Set —依次拾取四条边:0K—in put NDIV: 20 —OK —(back to the mesh tool window)Mesh: Areas, quad, Mapped —Mesh —Pick All (in Pick ing Me nu) —Close( the Mesh Tool wi ndow)7模型施加约束和载荷给两直线施加约束ANS YS Main Menu: Solutio n—Defi ne Loads —Apply —Structural—Displaceme nt —On lines —拾取水平边—OK —selectLab2:U Y —apply—拾取竖直边边—OK —select Lab2:UX—OK 给内外圆弧施加均布载荷q和pANS YS Main Menu: Solutio n—Defi ne Loads —Apply —Structural—Pressure —On Li nes —拾取外圆弧;OK —输入10000—apply—拾取内圆弧;OK —输入20000—OK8分析计算ANS YS Main Me nu: Solutio n—Solve —Curre nt LS —OK(to closethe solve Curre nt Load Step win dow) —OK9结果显示ANS YS Main Menu: Ge neral Postpro—Plot Results — Deformed Shape …—select Def + Un deformed —OK (back to Plot Results win dow) —Con tour Plot —Nodal Solu …—select: DOF solutio n, UX,U YDef + Un deformed , Stress ,SX,S Y,S Z, Def + Un deform—OK —select STRES S von mises stress (以上只是一组分析的步骤,其他组分析步骤与以上相同,只需修改相关参数即可)。