电动机点动控制
- 格式:ppt
- 大小:14.73 MB
- 文档页数:21
电动机点动的控制
一、控制要求:
用一个按钮控制电动机的启停,实现点动控制。
按下按钮SB,电动机开始运行;松开
按钮SB,电动机停止运转。
二、硬件电路设计:
根据控制要求列出所用的输入/输出点,并为其分配相应的地址,其I/O分配表如下;
根据上表和控制要求,设计PLC硬件原理图,其中COM1为PLC输入信号公共端,COM2为输出信号公共端。
三、编程思路:
这个实例的编程,可以采用“点对点”控制,实现对PLC某一输出位的控制,即有一个触点直接控制一个输出位。
四、控制程序的设计:
根据要求设计控制梯形图
五、程序执行过程:
(1)、当按下按钮SB时,输入信号0.00有效,输出信号100.00为ON. 控制接触器KM 的线圈通电,电动机启动运行;当SB 断开时,输出信号100.00为OFF, 控制接触器线圈断电,电动机运行。
(2)、当电动机过载时热继电器动作,输入信号0.01断开使100.00复位,切断KM的线圈回路,达到对电机过载保护的目的。
六、编程心得:
程序设计中,输入信号0.01采用的动断触电,对于PLC输入信号的内部状态取决于外部端子的状态。
对于PLC的输入信号,外部端子接线状态对应内部的状态有两种,PLC输入端子接成动断触点,PLC在使用时其内部触点已经有效,因此应使用动合触点,这样的程序设计更加可靠,当电动机发生过载时,FR的触点动作,使输入信号0.01断开,此时若输入信号0.01有效,电动机也无法启动。
电动机点动控制原理电动机点动控制是一种常见的电机控制方式,它通过控制电动机的启停和转向来实现对设备的精准控制。
本文将介绍电动机点动控制的原理及其应用。
电动机点动控制的原理主要包括电路控制和逻辑控制两个方面。
电路控制是通过控制电动机的供电电路来实现对电机的启停和转向。
逻辑控制则是通过控制逻辑电路或者PLC等控制器来实现对电机的点动控制。
下面将分别介绍这两个方面的原理。
首先是电路控制。
电动机的启停控制通常通过接触器或者电磁起动器来实现。
当需要启动电动机时,控制电路闭合,电动机接通电源,从而启动电机;当需要停止电动机时,控制电路断开,电动机断开电源,从而停止电机的运行。
而电动机的转向控制则通过接触器或者电磁起动器的控制回路来实现,通过改变控制回路中的接线方式,可以实现电动机的正转、反转和制动等操作。
其次是逻辑控制。
逻辑控制通常通过PLC等可编程逻辑控制器来实现。
在PLC中,可以通过编程来实现对电动机的点动控制,通过设定不同的逻辑条件和动作指令,可以实现对电动机的启停和转向控制。
例如,可以通过编程实现按下按钮启动电机,再次按下按钮停止电机;也可以通过编程实现按下不同的按钮来实现电机的正转、反转和制动等操作。
电动机点动控制在工业自动化领域有着广泛的应用。
它可以实现对设备的精准控制,提高生产效率,减少人力成本。
例如,在流水线上,可以通过电动机点动控制来实现对输送带、机械臂等设备的启停和转向控制;在机械加工设备上,可以通过电动机点动控制来实现对主轴的启停和转向控制;在物流仓储设备上,可以通过电动机点动控制来实现对提升机、输送机等设备的启停和转向控制。
总之,电动机点动控制是一种重要的电机控制方式,它通过电路控制和逻辑控制来实现对电动机的精准控制,广泛应用于工业自动化领域,为生产提供了便利和效率。
希望本文对电动机点动控制的原理及应用有所帮助。
电动机点动控制工作原理
电动机的点动控制工作原理是通过控制电动机输入电源的方式来实现。
点动控制是一种在按下按钮或者开关时,电动机只运行一小段时间的控制方式。
具体工作原理如下:
1. 首先,将电动机的电源接通:将电源的正极连接到电动机的一个端子上,将电源的负极连接到电动机的另一个端子上。
2. 接下来,使用控制装置,如按钮或开关,来控制电机的运行。
当按下按钮或打开开关时,控制装置的电路闭合。
3. 当电路闭合时,电源上的电流开始流动。
由于电动机的连接方式,电流会通过电动机的绕组,使得绕组中的导体产生磁场。
4. 产生的磁场会与电动机的磁极相互作用,使得电动机开始运动。
同样地,电动机也会产生反作用力,阻碍电流的流动。
5. 一旦电动机开始运动,控制装置可以断开电路,切断电流的供应。
这样,电动机就会停止运行。
当需要再次启动电机时,只需再次闭合电路即可。
总结来说,电动机的点动控制利用控制装置来控制电流的通断,从而切换电机的运行状态。
通过合理的操作控制装置,可以实现电动机的点动运行。
电动机点动控制原理引言电动机是现代工业中常见的一种驱动设备,它广泛应用于机械领域。
电动机点动控制是一种常见的控制方式,用于控制电动机按照指定步长进行启停运行。
本文将深入探讨电动机点动控制原理及其应用。
电动机点动控制原理电动机点动控制是通过控制电路来实现的。
下面是电动机点动控制的基本原理:1. 开关控制电路电动机点动控制采用了开关控制电路,通过控制开关的通断来实现电动机的启停控制。
通常,点动控制电路由一系列按钮、继电器和接触器组成。
2. 继电器继电器是电动机点动控制中的关键部件。
它在控制电路中起到了电气开关的作用,实现了电动机的启停。
3. 接触器接触器是由电动机的输入电路和输出电路两部分组成的。
它通过控制继电器的连接和断开来实现电动机的点动控制。
电动机点动控制应用电动机点动控制在很多领域都有广泛的应用。
下面是几个常见的应用场景:1. 机械加工在机械加工过程中,电动机点动控制常被用于控制机床等设备的启动和停止,确保机床能够按照指定步长移动。
当需要将物料从一处运输到另一处时,电动机点动控制可以用于控制输送带的启停,以确保物料能够按照要求的速度和步长进行运输。
3. 电梯控制电梯是现代建筑中不可或缺的设备之一,而电动机点动控制可以用于电梯的启动和停止,实现楼层之间的运动。
4. 变频器控制电动机点动控制还可以与变频器结合使用,实现电动机的无级调速。
通过控制变频器的输出频率,可以实现电动机的平稳启停和速度控制。
电动机点动控制的优势电动机点动控制在实际应用中具有以下优势:•灵活性高:电动机点动控制可以根据实际需要,精确地控制电动机的启停运行,提高工作效率。
•能耗低:电动机点动控制可以避免长时间运行,节约能源。
•可靠性强:电动机点动控制采用了可靠的继电器和接触器,保证了控制系统的稳定性和可靠性。
电动机点动控制的未来发展随着科技的不断进步和人们对效率的要求不断提高,电动机点动控制将会继续发展壮大。
以下几个方面可能是其未来的发展方向:1. 自动化程度提高随着自动化技术的发展,电动机点动控制将更加智能化和自动化。
电动机的点动及连续控制实验心得
点动及连续控制实验心得
随着近年来新能源发展的快速发展和投入应用,电动机的作用日趋重要,电动机在各项应用中表现出了非常重要的作用。
在本次实验中,我们对电动机的点动及连续控制作了深入的研究,并进行了实验,利用洛克电气公司的仪器,让实验取得了较好的效果。
首先,我们完成了关于电动机点动控制的实验,一般来说,点动控制是最常见的电动机控制方式,使用点动控制技术可以实现电动机的启动、停止及转速调节,从而满足电动机的运行要求。
其控制原理是通过对控制电路上的控制信号进行智能控制,实现对电动机的启动、调速和停止。
其次,我们进行了关于电动机连续控制的实验,连续控制是通过一个精细的调速驱动器来控制电动机的一种方式,可以使用精确的电路来控制电动机的启动、停止及转速调节,从而使电动机更加精确、可靠,更能满足特定的应用需求。
通过本次实验,我深刻地体会到电动机控制的先进性和复杂性,以及控制精度和可靠性的重要性。
本次实验不仅使我深入了解到电动机的控制技术,而且使我对以后使用电动机有了一定的认识,可以更准确、可靠地控制电动机。
二、三相异步电动机正、反向点动控制电路。
点动控制电路是在需要设备动作时按下控制按钮SB,接触器KM线圈得电主触点闭合设备开始工作,松开按钮后接触器线圈断电,主触头断开设备停止。
此种控制方法多用于小型起吊设备的电动机控制。
电动机正、反向点动控制电路电气原理图三相异步电动机点动控制电路的检查和试车常规检查有1、对照原理图,接线图逐线检查,核对线号。
防止导线错接和漏接。
2、检查所有端子接线接触情况,排除虚接处。
3、用万用表检查不带电进行。
摘下接触器的灭弧罩,以便用手操作来模拟触点分合动作,用万用表测量时,将万用表挡位开关置于R×1挡。
(1)检查主电路;取下辅助电路熔体FU,用万用表表笔分别测量开关下端子U~V、U~W、U、一W:之间的电阻,结果均应为断路,电阻应无穷大(R=∞)。
若某次测量的结果的电阻较小或为零,则说明所测两相之间的接线有短路点,应仔细逐相检查排除短路点。
方法是用手按压接触器触头架,使接触器三极主触点闭合,重复上述测量,可分别测得电动机各相绕的阻值。
若某测量结果为断路(R=∞)则应仔细检查所测两相之间的各段接线。
例如测量V~W之间电阻值R=∞则说明主电路B、C两相之间的接线有断路处。
可将―支表笔接与空气开关QF的V处,另一只表笔依次测V相各段导线两端端子,均应测得R=0,再将表笔移到W相各段导线两端测量,则分别测得电动机―相绕组的阻值,这样即可准确地查出断路点,并予以排除。
(2)检查辅助电路,装好辅助电路的熔体FU,用万用表表笔接开关端子V、W(辅助电路电源线)处,应测得为断路;按下SB1、SB2,应分测得接触器KM1和KM2线圈电阻。
若侧的为断路,应在互锁接点的两端测量,用以判断互锁接点是否接触良好。
4、通电试车完成上述检查后,清点工具材料,清理安装板上的线头杂物,检查三相电源,在有人监护下执行安全规程的有关规定通电试车,拆除与电动机定子绕组的接线。
(1)空载试验:接通电源开关QF,按下SB1按钮,接触器KM1立即动作,松开SB1则K M1应立即断电复位,按下SB2按钮,接触器KM2立即动作,松开SB1或SB2,KM1或KM2应立即断电复位,此时应认真观察KM主触头动作是否正常,细听接触器线圈通电运行声音是否正常。
电动机点动控制原理
电动机的点动控制原理是通过改变电动机的电源电压或电流来实现电动机的启动和停止。
通常情况下,电动机的启动需要较大的启动电流,而停止需要断开电源电压。
在点动控制中,可以使用接触器或电磁继电器作为控制元件。
通过切换接触器或电磁继电器的状态,可以改变电动机的电源电压或电流。
一种常见的点动控制电路是使用单按钮控制。
通过按下按钮,可以瞬时地将电源电压传递给电动机,使其启动。
当按钮释放后,电源电压会断开,电动机停止运行。
另一种常见的点动控制电路是使用双按钮控制。
这种电路需要同时按下两个按钮才能启动电动机,其中一个按钮用于启动,另一个按钮用于停止。
只有当两个按钮都按下时,电源电压才能传递给电动机,使其启动。
当任何一个按钮释放后,电源电压会断开,电动机停止运行。
此外,还可以使用定时器或计数器来实现电动机的点动控制。
通过设置定时器或计数器的时间或次数,可以控制电动机的运行时间或运行次数。
一旦达到设定的时间或次数,电动机会停止运行。
总之,电动机的点动控制通过改变电源电压或电流来实现电动机的启动和停止,可以使用接触器、电磁继电器、按钮、定时器或计数器等控制元件来实现。
《电动机点动控制》一、实训目的通过本次的实训以提高同学们对具有过载保护的点动线路的理解和认识。
通过实训以达到知识和技能相结合的目的;更好的完成学习任务。
同时锻炼同学们的认知能力、技能水平;学会三相异步电动机具有过载保护的点动控制电路的操作和接线方法。
通过实习理解电力拖动以及点动的概念。
二、实训内容1、电动机的点动控制线路,具有过载保护的单相点动控制线路。
详图如下:2、线路分析(1)SB为线路的控制按钮。
(2)工作原理:合上开关QS起动:按下SB→KM线圈获电—停止:放开SB→KM线圈断电释放—按下控制按钮SB,由于接在按钮SB下端的KM线圈通电,KM主触头闭合,电机开始运转;当放开控制按钮SB后,电机停转。
这种线路叫做点动控制线路,由于线路中加装了热继电器,所以线路依然具有过载保护。
同时还兼有欠电压、失电压、短路等保护特点。
三、实训准备1、思想准备这个线路由于是刚开始接触到实习,对电工接线知识还是很欠缺,可能在接线的过程中将某根导线接错,导致整个实习失败。
对此我一定要在实习前细心的钻研图纸,认真的理解原理,虚心的向老师、同学请教,以确保此次实习圆满成功,达到规定的水平。
四、实训要求1、正确度要求。
线路只能一次性完成,且100%正确,为总分的40%。
一次上交检查不正确扣去40%总分的1/10,三次上交检查不正确,该项目记为0分,只要线路不正确,该模块总成绩记为0分,需要参与下次的有偿补考。
2、工艺要求主线路用吕芯线,控制回路用铜芯线。
导线的弯折度为90度,但不能借助其他工具进行加工,否则扣分。
弯折点与接线柱的距离为2cm左右,不能过长或过短。
主线路可以架空,但控制线路不能架空,并且相同走向的导线必须成一扎。
导线与连接点接线时,不能将导体部分裸露太长或者太短。
不能存在反圈。
3、时间要求整个线路完成总时间为90分钟。
4、纪律要求在实习场内坚决保证不说话,不打闹,不吃东西,不干与该操作内容无关的事情。
还实习厂一片安静。
三相鼠笼式异步电动机点动控制和自锁控制(实物)在电机控制单元完成本实验一、实验目的1. 通过对三相鼠笼式异步电动机点动控制和自锁控制线路的实际安装接线,掌握由电气原理图变换成安装接线图的知识。
2.通过实验进一步加深理解点动控制和自锁控制的特点。
二、实验说明1.点动控制启动:按启动按钮SB1,I0.0的动合触点闭合,Q0.3线圈得电,即接触器KM4的线圈得电,0.1S后Q0.0线圈得电,即接触器KM1的线圈得电,电动机作星形连接启动。
每按动SB1一次,电机运转一次。
2.自锁控制启动:按启动按钮SB2,I0.1的动合触点闭合,Q0.3线圈得电,即接触器KM4的线圈得电,0.1S后Q0.0线圈得电,即接触器KM1的线圈得电,电动机作星形连接启动。
只有按下停止按钮SB3时电机才停止运转。
三、实验面板图四、实验步骤1.输入输出接线输入SB1 SB2 SB3 I0.0 I0.1 I0.2输出KM1 KM4 Q0.0 Q0.3注:PLC主机公共端接线方法见实验一2.打开主机电源将程序下载到主机中。
3.启动并运行程序观察实验现象。
五、梯形图参考程序实验三相鼠笼式异步电动机联锁正反转控制(实物)在电机控制单元完成本实验一、实验目的1. 通过对三相鼠笼式异步电动机连锁正反转控制线路的安装接线,掌握由电气原理图接成实际操作电路的方法。
2. 加深对电气控制系统各种保护、自锁、互锁等环节的理解。
3. 学会分析、排除继电--接触控制线路故障的方法。
二、实验说明启动:按启动按钮SB1,I0.0的动合触点闭合,M20.0线圈得电,M20.0的动合触点闭合,Q0.0线圈得电,即接触器KM1的线圈得电,0.5S后Q0.3线圈得电,即接触器KM4的线圈得电,电动机作星形连接启动,此时电机正转;按启动按钮SB2,I0.2的动合触点闭合,M20.1线圈得电,M20.1的动合触点闭合,Q0.1线圈得电,即接触器KM2的线圈得电,0.5S 后Q0.3线圈得电,电动机作星形连接启动,此时电机反转;在电机正转时反转按钮SB2是不起作用的,只有当按下停止按钮SB3时电机才停止工作;在电机反转时正转按钮SB1是不起作用的,只有当按下停止按钮SB3时电机才停止工作。
点动控制名词解释
点动控制,又称为寸动控制,是一种基础的电路控制方式。
具体来说,它是通过按动按钮开关来控制电动机的启动和停止。
当按下按钮开关时,交流接触器的工作线圈得电,主触点闭合,接通三相电源,电动机得电启动运行;当松开按钮开关后,交流接触器的工作线圈失电断开,主触点断开,断开三相电源,电动机失电停止运转。
这种控制方式广泛应用于机床刀架、横梁、立柱等的快速移动和机床对刀等场合。
以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询专业电工。
三相异步电动机是工业中常用的电动机之一,其具有结构简单,维护成本低,运行可靠等特点。
在实际工业生产中,对于三相异步电动机的精细控制是非常重要的,点动连续控制是其中的一种重要控制方式。
本文将从三相异步电动机的基本原理、点动连续控制的概念、应用场景和控制方法等方面进行详细介绍。
1. 三相异步电动机的基本原理三相异步电动机是利用交流电的三相电流产生旋转磁场,从而驱动电机转动。
其基本原理可以简述为:当三相电源施加到电动机的定子绕组上时,由于三相电流的相位差,产生一个旋转的磁场。
这个旋转的磁场会感应出转子导体中感应电动势,从而在转子中产生电流,根据洛伦兹力的作用,电机开始转动。
三相异步电动机具有结构简单、使用可靠、成本低等优点,因此在工业生产中得到广泛应用。
2. 点动连续控制的概念点动连续控制是对三相异步电动机进行精细控制的一种方式,它主要应用于需要电机进行间歇性工作的场合。
点动控制是指通过控制电机的启动、停止和正反转等动作,实现对电机的简单控制。
而连续控制则是指在点动控制的基础上,通过对电机的转速、转矩等参数进行精细调节,实现对电机动作的连续稳定控制。
点动连续控制不仅可以提高电机的工作效率,还可以延长电机的使用寿命,因此在实际工业应用中得到广泛运用。
3. 点动连续控制的应用场景点动连续控制主要应用于需要电机进行间歇性工作的场合,例如:起重设备、输送带、挖掘机、冲床等。
在这些设备中,电机需要根据工艺要求进行启停、正反转以及精细的转速和转矩控制。
通过点动连续控制,可以实现这些设备的灵活操作,提高生产效率,减少能耗,降低设备损耗,从而达到节能减排的目的。
点动连续控制在现代工业生产中具有重要意义。
4. 点动连续控制的方法点动连续控制的方法主要包括硬件控制和软件控制两种。
硬件控制是指通过对电机的电气结构进行改造,增加启动、停止、正反转等控制装置,同时配合传感器和执行器,实现对电机的精细控制。
软件控制则是指通过对电机控制系统的软件进行优化和调整,利用现代控制理论和方法,对电机进行精准的控制。
电动机点动控制原理
电动机点动控制是指通过控制信号,使电动机能够在短时间内按照预定的步进或连续方式进行运动。
其原理主要涉及以下几个方面:
1. 控制信号发生器:通过控制信号发生器产生控制信号,控制电动机的启停、运动方向及速度等参数。
常见的控制信号发生器包括微处理器、PLC、触发电路等。
2. 控制电路:控制电路是负责将信号发生器产生的控制信号转化为电动机运动所需的电流或电压等参数。
控制电路中常用的元件包括继电器、触发器、电流控制器等。
3. 电动机保护装置:由于电动机在运行过程中可能会面临过载、过热等问题,因此需要配置相应的保护装置。
常见的保护装置有过载保护器、温度传感器、电流限制器等。
4. 动力装置:动力装置提供电动机所需的动力源,通常为交流电源或直流电源。
根据不同的应用场景和控制要求,动力装置可以采用不同的功率、电压和电流等参数。
5. 反馈信号:为了控制电动机的运动精度和稳定性,通常需要对电动机的运动状态进行反馈检测。
常见的反馈信号有位置、速度、加速度等。
通过以上原理和装置的配合,电动机点动控制可以实现对电动机的精确控制,从而满足特定的运动需求。
在实际应用中,电
动机点动控制广泛应用于自动化设备、机械加工、印刷设备等领域。
电动机点动控制实训报告电动机点动控制实训报告(学校)《电动机点动控制》实训报告班级:姓名:学号:实训地点:指导教师:辅导员:202*年10月8日《电动机点动控制》一、实训目的通过本次的实训以提高同学们对具有过载保护的点动线路的理解和认识。
通过实训以达到知识和技能相结合的目的;更好的完成学习任务。
同时锻炼同学们的认知能力、技能水平;学会三相异步电动机具有过载保护的点动控制电路的操作和接线方法。
通过实习理解电力拖动以及点动的概念。
二、实训内容1、电动机的点动控制线路,具有过载保护的单相点动控制线路。
详图如下:2、线路分析(1)SB为线路的控制按钮。
(2)工作原理:合上开关QS起动:按下SB→KM线圈获电停止:放开SB→KM线圈断电释放按下控制按钮SB,由于接在按钮SB下端的KM线圈通电,KM主触头闭合,电机开始运转;当放开控制按钮SB后,电机停转。
这种线路叫做点动控制线路,由于线路中加装了热继电器,所以线路依然具有过载保护。
同时还兼有欠电压、失电压、短路等保护特点。
三、实训准备1、思想准备这个线路由于是刚开始接触到实习,对电工接线知识还是很欠缺,可能在接线的过程中将某根导线接错,导致整个实习失败。
对此我一定要在实习前细心的钻研图纸,认真的理解原理,虚心的向老师、同学请教,以确保此次实习圆满成功,达到规定的水平。
2、元器件准备序号元件名称元件型号元件数量单位备注1闸刀开关HK1-30/31只2熔断器RC1A-153只3熔断器RC1A-52只4交流接触器CJ0-202只5热继电器JR0-20/3D1只6按钮开关1只7电动机75W1台3、工具准备序号工具名称工具型号工具数量单位备注1钢丝钳160mm1把2斜口钳160mm1把3剥线钳1把4螺丝刀2只两种不同5电工刀1把6尖嘴钳160mm1把7测电笔1只4、材料准备序号材料名称材料型号材料数量单位备注1吕芯线BLV-2.53米2铜芯线BV-15米3钢精扎头2#3#各5支四、实训要求1、正确度要求。