钢的 热处理
- 格式:ppt
- 大小:4.82 MB
- 文档页数:115
钢的热处理分类
1. 退火!嘿,就像让钢好好地休息一下。
比如说打造一把剑,退火能让剑身更稳定,没那么脆啦,不容易断哦!
2. 正火呀,这就类似给钢来个“提神醒脑”。
你想想啊,制造汽车零件的时候,正火一下,零件就更结实耐用咯!
3. 淬火哦,哇,这可是让钢变得超级强硬的关键一步。
好比运动员要去参加重要比赛,经过淬火的钢就是那最厉害的选手!就像做刀具,淬火后那才叫锋利呢!
4. 回火呢,有点像给刚猛的钢“降降火”。
比如你看那弹簧,经过回火处理,才既有弹性又不会轻易变形呀!
5. 表面热处理,这可真是个神奇的操作。
就像给钢化个美美的妆,让它的表面更耐磨更耐腐蚀呀。
好比自行车的链条,做了表面热处理,就能长久如新啦!
6. 化学热处理,哎呀呀,这可是能给钢带来特别性质的魔法呢!就好像给钢赋予了超能力,像齿轮经过这样的处理,性能那叫一个棒!
7. 渗碳处理呀,是不是感觉很陌生?其实就像给钢加餐补充营养一样。
做一些机械零件的时候,渗碳处理让它们更强大哟!
8. 渗氮处理,这个厉害啦!简直是给钢穿上了一层坚固的盔甲。
像一些高精密的仪器零件,渗氮处理后质量杠杠的嘞!
9. 碳氮共渗,哇哦,这是双重强化啊!就如同给钢来了个组合拳,让它的性能翻倍呀。
总之,钢的热处理分类就是这么奇妙又重要,每一种都有它独特的作用和效果,能让钢变得更出色呀!。
钢的热处理定义及目的
嘿,朋友们!今天咱来唠唠钢的热处理。
那钢的热处理到底是啥呢?简单说呀,就是对钢进行一系列特别的操作。
咱先说说它的定义哈。
钢的热处理呀,就是通过加热、保温和冷却等手段,来改变钢的组织结构,从而让钢具备咱想要的性能。
就好比咱人要根据不同场合打扮自己一样,钢也要经过这样的“打扮”来变得更厉害。
那热处理的目的是啥呢?这可太重要啦!首先,它能让钢变得更硬更强。
想象一下,要是钢都软趴趴的,那能用来干啥呀,对吧?经过热处理,钢就可以硬起来,能承受更大的压力和力量。
其次呢,它可以提高钢的耐磨性。
就像咱的鞋子要是不耐磨,走几步路就坏了,那多闹心呀。
钢也是一样,要是不耐磨,用不了多久就不行了。
再者,热处理还能改善钢的韧性。
要是钢太脆了,稍微一碰就断了,那可不行呀!经过处理后,钢就没那么容易断啦。
还有哦,它能让钢的耐腐蚀性能变好。
就跟咱给东西涂一层保护膜似的,让钢不容易被腐蚀损坏。
比如说,咱家里用的刀具,那可就得经过热处理呀,不然切个菜都费劲,还容易坏。
还有汽车上的零件,不热处理能行么?那不得开着开着就出问题啦!这钢的热处理是不是超级重要呀?
总之呢,钢的热处理就是让钢变得更棒的一种方法,它能让钢在各种地方发挥更大的作用,为我们的生活带来便利和安全。
所以呀,可别小瞧了这钢的热处理哦!。
钢材热处理的四种方法钢材热处理是指通过加热、保温和冷却等一系列工艺,改变钢材的组织和性能,以达到一定的技术要求。
在工程实践中,钢材热处理是非常重要的一环,可以有效提高钢材的硬度、强度、韧性和耐磨性等性能。
下面将介绍钢材热处理的四种常见方法。
首先,淬火是一种常见的钢材热处理方法。
淬火是指将钢材加热至临界温度以上,然后迅速冷却到室温或低温,使其组织发生相变,从而获得高硬度和高强度。
淬火是通过快速冷却来固溶过饱和的碳元素,形成马氏体组织,从而提高钢材的硬度。
淬火后的钢材具有较高的表面硬度和内部强度,适用于制作刀具、弹簧等工件。
其次,回火是钢材热处理的另一种重要方法。
回火是指将淬火后的钢材加热至较低的温度,保温一定时间后再冷却,目的是消除淬火产生的残余应力和改善硬度。
回火可以使钢材获得适当的硬度和韧性,提高其耐磨性和抗断裂性能,适用于制作各种机械零件和工具。
另外,正火是一种钢材热处理方法,也称为退火。
正火是将钢材加热至适当温度,保温一定时间后缓慢冷却,目的是使钢材内部组织发生均匀的晶粒再结晶和析出碳化物,从而获得较好的韧性和塑性。
正火后的钢材具有较低的硬度和较高的韧性,适用于制作焊接零件和需要较高韧性的零件。
最后,固溶处理是一种钢材热处理方法,主要用于不锈钢和高温合金等特殊钢材。
固溶处理是将钢材加热至固溶温度,然后保温一定时间后迅速冷却,目的是溶解钢材中的合金元素和固溶相,从而提高钢材的塑性和加工性能。
固溶处理后的钢材具有较好的塑性和韧性,适用于制作航空发动机零件和化工设备等高温高压工件。
综上所述,钢材热处理的四种方法分别是淬火、回火、正火和固溶处理。
每种方法都有其适用的钢材和工件类型,通过合理选择和控制热处理工艺参数,可以使钢材获得理想的组织和性能,满足不同工程要求。
在实际生产中,需要根据具体情况选择合适的热处理方法,以确保钢材具有良好的性能和可靠的使用寿命。
常用钢材热处理方法及目的常用钢材热处理方法一.淬火将钢制零件加热到临界温度以上40~60℃,保持一定时间并快速冷却的热处理方法称为淬火。
常用的快速冷却介质为油、水和盐水溶液。
淬火加热温度及冷却介质热处理规范见表淬火的目的是:使钢件获得高的硬度和耐磨性,通过淬火钢件的硬度一般可达hrc60~65,但淬火后钢件内部产生了内应力,使钢件变脆,因此,要经过回火处理加以消除。
钢件的淬火处理,在机械制造过程中应用比较普遍,它常用的方法有:1.单液淬火:将钢件加热至淬火温度,并在一种冷却剂中冷却一段时间。
这种热处理方法称为单液淬火。
适用于形状简单、技术要求低的碳钢或合金钢,以及工件直径或厚度大于5~8mm的碳钢,用盐水或水冷却;油冷却用于合金钢。
在单液淬火中,水冷容易变形和开裂;油冷却容易产生硬度不足或不均匀。
2.双液淬火:将钢件加热到淬火温度,经保温后,先在水中快速冷却至300~400℃,在移入油中冷却,这种处理方法,称为双液淬火。
形状复杂的钢件,常采用此方法。
它既能保证钢件的硬度,又能防止变形和裂纹。
缺点是操作难度大,不易掌握。
3.火焰表面淬火:将乙炔和氧气的混合燃烧火焰喷在工件表面,加热至淬火温度,然后立即向工件表面喷水。
这种处理方法称为火焰表面淬火。
适用于单件生产,要求高表面或局部表面硬度和耐磨钢件。
缺点是操作困难。
4.表面感应淬火:将钢件放人感应器内,在中频或高频交流电的作用下产生交变磁场,钢件在磁场作用下产生了同频率的感应电流,使钢件表面迅速加热(2-10s)至淬火温度,立即把水喷射到钢件表面。
这种热处理方法,称为表面感应淬火。
经表面感应淬火的零件,表面硬而耐磨,而内部有较好的强度和韧性。
这种方法适用于中碳钢和中等含碳量的合金钢件。
根据电流频率的不同,表面感应淬火可分为高频淬火、中频淬火和工频淬火。
高频淬火电流频率为100~150kHz,硬化层深度为1~3mm。
适用于齿轮、花键轴、活塞等小零件的淬火;中频淬火电流频率为500~10000Hz,硬化层深度为3~10mm。
钢的热处理原理钢是一种重要的金属材料,广泛应用于工业生产和日常生活中。
钢的性能可以通过热处理来改善,热处理是利用加热和冷却的方式,改变钢的组织结构和性能。
热处理原理是钢材加热至一定温度,然后保温一段时间,最后进行冷却。
下面将详细介绍钢的热处理原理及其影响。
首先,钢的热处理原理包括加热、保温和冷却三个过程。
加热是将钢材加热至一定温度,通常高于其临界温度,使其组织发生相变。
保温是在一定温度下保持一段时间,使组织结构得以稳定。
冷却是以一定速度使钢材迅速冷却至室温,使其组织结构得以固定。
这三个过程相互联系,共同影响着钢材的性能。
其次,热处理原理对钢材的性能有着重要影响。
加热可以改变钢材的组织结构,使其晶粒长大,晶界清晰,提高了塑性和韧性。
保温可以使钢材内部的相变得以充分进行,进一步改善了钢材的组织结构。
冷却的速度和方式也会对钢材的性能产生影响,快速冷却可以得到马氏体组织,提高了钢的硬度。
另外,热处理原理还受到材料成分、加热温度、保温时间和冷却速度等因素的影响。
不同的钢材成分会影响相变温度和组织结构,加热温度和保温时间的选择也会直接影响到钢材的性能。
冷却速度的选择则会影响到钢材的硬度和韧性,不同的冷却方式也会得到不同的组织结构。
总之,钢的热处理原理是通过加热、保温和冷却三个过程,改变钢材的组织结构和性能。
热处理原理对钢材的性能有着重要影响,同时受到材料成分、加热温度、保温时间和冷却速度等因素的综合影响。
因此,在实际生产中,需要根据具体的要求和条件,合理选择热处理工艺参数,以达到最佳的效果。
通过对钢的热处理原理的了解,我们可以更好地掌握钢的性能调控方法,为工业生产提供更好的材料支持。
同时,也可以更好地利用钢材的性能,满足不同领域的需求。
希望本文能够对大家有所帮助,谢谢阅读!。
钢材的热处理有以下几个方法※均质退火处理简称均质化处理(Homogenization),系利用在高温进行长时间加热,使内部的化学成分充分扩散,因此又称为『扩散退火』。
加热温度会因钢材种类有所差异,大钢锭通常在1200℃至1300℃之间进行均质化处理,高碳钢在1100℃至1200℃之间,而一般锻造或轧延之钢材则在1000℃至1200℃间进行此项热处理。
※完全退火处理完全退火处理系将亚共析钢加热至Ac3温度以上30~50℃、过共析钢加热至Ac1温度以上50℃左右的温度范围,在该温度保持足够时间,使成为沃斯田体单相组织(亚共析钢)或沃斯田体加上雪明碳体混合组织后,在进行炉冷使钢材软化,以得到钢材最佳之延展性及微细晶粒组织。
※球化退火处理球化退火主要的目的,是希望藉由热处理使钢铁材料内部的层状或网状碳化物凝聚成为球状,使改善钢材之切削性能及加工塑性,特别是高碳的工具钢更是需要此种退火处理。
常见的球化退火处理包括:(1)在钢材A1温度的上方、下方反复加热、冷却数次,使A1变态所析出的雪明碳铁,继续附着成长在上述球化的碳化物上;(2)加热至钢材A3或Acm温度上方,始碳化物完全固溶于沃斯田体后急冷,再依上述方法进行球化处理。
使碳化物球化,尚可增加钢材的淬火后韧性、防止淬裂,亦可改善钢材的淬火回火后机械性质、提高钢材的使用寿命。
※软化退火处理软化退火热处理的热处理程序是将工件加热到600℃至650℃范围内(A1温度下方),维持一段时间之后空冷,其主要目的在于使以加工硬化的工件再度软化、回复原先之韧性,以便能再进一步加工。
此种热处理方法常在冷加工过程反复实施,故又称之为制程退火。
大部分金属在冷加工后,材料强度、硬度会随着加工量渐增而变大,也因此导致材料延性降低、材质变脆,若需要再进一步加工时,须先经软化退火热处理才能继续加工。
※弛力退火处理弛力退火热处理主要的目的,在于清除因锻造、铸造、机械加工或焊接所产生的残留应力,这种残存应力常导致工件强度降低、经久变形,并对材料韧性、延展性有不良影响,因此弛力退火热处理对于尺寸经度要求严格的工件、有安全顾虑的机械构件事非常重要的。
钢的热处理原理与方法论文摘要:热处理是指通过加热和冷却来改变金属材料的组织和性能。
钢的热处理是钢加工过程中重要的一步,可以显著改善钢材的强度、韧性和耐磨性等性能,提高其使用寿命和使用范围。
本文将介绍钢的热处理原理与方法,包括淬火、回火、正火等常用的热处理方法,以及热处理的影响因素和应用范围。
一、热处理原理钢的热处理是基于钢材的相变规律和组织变化规律来进行的。
钢材在加热过程中,会出现固溶、析出和相变等现象,从而改变钢材的组织和性能。
通过合理的加热和冷却过程,可以使钢材达到理想的组织状态,进而实现理想的力学性能。
钢材的相变规律是钢材热处理的基础。
一般来说,钢材的相变包括固溶相变和析出相变。
固溶相变是指固溶体中的一种化学成分在加热过程中溶解或析出的现象,如奥氏体相变和铁素体相变等。
析出相变是指固溶体中的化学成分在冷却过程中析出或析出的现象,如马氏体相变等。
钢材的组织变化规律是钢材热处理的另一个重要方面。
钢材的组织包括组织类型和组织形态两个方面。
组织类型是指钢材中各种物相的分布和比例,如奥氏体、铁素体、珠光体等;组织形态是指物相在钢材中的形状和大小,如粗大晶粒、细小晶粒等。
通过控制钢材的加热和冷却过程,可以控制钢材的组织类型和组织形态,从而实现理想的力学性能。
二、热处理方法1.淬火淬火是指将高温钢材迅速冷却到室温以下,使其产生马氏体相变。
马氏体具有高硬度和脆性的特点,可以显著提高钢材的硬度和强度,但降低了韧性。
因此,淬火一般需要进行回火处理来改善钢材的韧性。
2.回火回火是指将淬火后的钢材加热到较低温度并保温一段时间,然后冷却到室温。
回火可以消除淬火时产生的内应力和组织不均匀性,通过分解马氏体改善钢材的韧性,同时适当降低硬度和强度。
3.正火正火是指将低碳钢材加热到临界温度以上,保温一段时间,然后冷却至室温。
正火可以使铁素体相变为奥氏体,改善钢材的塑性和韧性,适用于需要保持一定塑性和耐久性的工件。
三、热处理的影响因素钢材的热处理效果和性能会受到多种因素的影响。
钢的化学热处理三个基本过程
钢的化学热处理包括三个基本过程:分解、吸收和扩散。
分解是指渗剂中生成能渗入钢表面的活性原子的化学反应,通常包括分解反应、置换反应和还原反应。
化学反应速度除取决于反应物的本性外,还与温度、压力、浓度、催化剂有关。
一般增加浓度和升高温度,能增加反应速度。
添加催化剂可以使反应速度剧增。
吸收是指一切固体都能或多或少地把周围介质中的分子、原子或离子吸附到自己的表面上来。
粗糙的表面比平滑的表面吸附作用强,晶界比晶内吸附作用强。
扩散是指活性原子从工件表层向内部的扩散,这是化学热处理过程中的重要环节。
扩散速度与温度和浓度梯度有关,通常温度越高,扩散越快。
以上三个过程是相互联系、相互影响的,必须同时进行,以保证化学热处理的顺利进行。
1/ 1。
第五章钢的热处理热处理——固态下,通过加热、保温、冷却、改变组织得到所需性能的工艺方法。
•特点:在固态下,只改变工件的组织,不改变形状和尺寸•目的:改善材料的使用、工艺性能•基本过程:加热→保温→冷却•分类:1、普通热处理——退火、正火、淬火、回火2、表面热处理——表面淬火、化学热处理第一节钢在加热时的组织转变实际加热和冷却时的相变点:平衡时—— A1 A3 Acm加热时—— Ac1 Ac3 Accm冷却时—— Ar1 Ar3 Arcm一、奥氏体的形成加热工序的目的:得到奥氏体F + Fe3C → A结构体心复杂面心含碳量 0.0218 6.69 0.77共析钢奥氏体形成过程:1、形核(在 F / Fe3C相界面上形核)2、晶核长大(F→ A晶格重构,Fe3C溶解,C→ A中扩散)3、残余Fe3C溶解4、奥氏体均匀化保温工序的目的:得到成分均匀的奥氏体,消除内应力,促进扩散对亚共析钢: P + F → A + F → A对过共析钢: P + Fe3CⅡ→ A + Fe3CⅡ→ A二、奥氏体晶粒长大及其影响因素1、奥氏体晶粒度•晶粒度——晶粒大小的尺度。
•本质粗晶粒钢——长大倾向较大(Al脱氧)•本质粗晶粒钢——长大倾向较小(Mn,Si脱氧)2、影响奥氏体晶粒长大的因素(1)加热温度↑,保温时间↑→ A晶粒长大快(2)加热速度↑→ A晶粒细(3)加入合金元素→ A晶粒细(4)原始组织细→ A晶粒细第二节钢在冷却时的组织转变冷却方式:等温冷却和连续冷却。
45钢加热后,随冷却速度的增加,强度、硬度增加,但塑性、韧性降低。
冷却是热处理的关键,故必须研究奥氏体冷却过程的变化规律。
一、过冷奥氏体等温转变1、共析钢过冷奥氏体等温转变曲线(C曲线或TTT线)的建立•过冷奥氏体:在A1以下,未发生转变的不稳定奥氏体。
•孕育期——表示过冷A 的稳定程度•四个区域——奥氏体稳定区、过冷奥氏体区、转变产物区、转变区•三种转变类型:高温转变(A1~550℃):A → P中温转变(550~230℃):A → B低温转变(230℃以下):A → M2、过冷奥氏体等温转变产物的组织和性能(1)珠光体转变•珠光体组成:F 和 Fe3C 的机械混合物•形成特点:在固态下形核、长大是扩散型相变•形态:A1~650℃:珠光体 P 20HRc 片状650~600℃:索氏体 S(细P)…600~550℃:托氏体 T(极细P又称屈氏体)40HRc 球状—— Fe3C 呈球状•珠光体性能珠光体片越细→ HB↑,σb↑且δ↑,αk↑C%相同时,球状 P 比片状 P 相界面少→HB↓,σb↓,δ↑,αk↑(2)贝氏体转变•贝氏体组成:过饱和F 和碳化物的机械混合物•形成特点:在固态下形核、长大是半扩散型相变•形态:550~350℃:上贝氏体(B上)羽毛状组织塑性差40-45HRc 350℃~ Ms:下贝氏体(B下)针片状组织综合性能好45-50HRc过冷奥氏体在Ms点以下,A→M属连续冷却转变。