微观经济学课件:不确定性
- 格式:ppt
- 大小:578.54 KB
- 文档页数:72
第三讲第讲不确定性下的选择教材第⏹5章⏹不确定性和风险⏹风险偏好⏹存在风险时的需求不确定性y和风险Uncertainty Risk什么是不确定性?在许多情况下我们不能确⏹什么是不确定性?在许多情况下,我们不能确定哪个结果会实现。
也就是说,有若干结果发生的概率都是正的。
我们用不确定性来描述这生的概率都是正的我们用不确定性来描述这类情况⏹有时我们不知道每种结果发生的概率(可能性),但有时知道每种结果发生的客观概率。
后一种类型的不确定性通常称为风险在本章中我们始终只分析风险在术语中通⏹在本章中,我们始终只分析风险,在术语中通常不区分风险和不确定性如何描风险如何描述风险?⏹为了描述某个事件的风险,我们需要知道:❑该事件所有可能的结果❑每个结果发生的客观概率,或概率密度⏹为了简化起见,我们把每个具有风险的事件都看作一个彩票(lottery),每个可能的结果都用每个可能的结果都用收入(货币) 来表示即使是没有不确定性的事件也可以被认为是一张退❑化的彩票期望值和方差⏹给定一个彩票,可能的结果是,相应给定个彩票可能的结果是相应的概率分别是,或概率密度expected value ⏹期望值(expected value ):⏹方差(variance ):标准差(standard deviation ): 方差的平方根⏹直观上,期望值表示彩票的平均回报,而方差刻画彩票的风险(是对风险的客观度量)一些性质性质E X+bY E⏹(aX+bY)= aE(X)+bE(Y)⏹D(aX+b)= a2D(X)⏹D(X+Y)= D(X)+D(Y)+2cov(X,Y)cov X Y)❑(X,Y)=E(X-EX)(Y-EY)=E(XY)-EX·EY❑如果X和Y相互独立,则D(X+Y)=D(X)+D(Y)存在风险时的决策⏹如果一个人面临两个选择:彩票A B 如果个人面临两个选择:彩票和彩票,他会选择哪一个?⏹这取决于他在有风险情况下的偏好❑期望效用(Expected utility )❑风险态度(Risk attitude )彩票空间和偏好彩票间和偏好为简便起见,如果一个彩票⏹为简便起见,如果个彩票A只有两种结果,我们用表示。
第12章 不确定性我们之前涉及的都是确定世界中的消费者行为,消费者掌握了关于影响其效用的所有变量的全部信息(complete information ),然而在现实的世界中,消费者在进行决策时所面临的信息是不完备的(incomplete information ),这意味着消费者是一个不确定的经济环境中进行决策,在这样一个不确定的世界中,消费者的决策会面临许多风险(比如通货膨胀、失业等等),那么在一个什么事情都可能发生的环境中,消费者又是如何进行消费决策的呢?这一问题就是本章所要研究的内容。
一、不确定性和风险的描述1.概率(probability )概率是对随机现象中某一事件(或状态)发生可能性大小的一种度量。
如果随机现象中某一事件(或状态)发生的概率是客观存在的,并有试验可作依据,则这种概率并定义为客观概率;如果随机现象中某一事件(或状态)发生的概率是根据决策者主观推测出来的(并无试验可作依据),则这种概率并定义为主观概率。
一般而言,不确定性是与客观概率相联系的随机现象,而风险是与主观概率相联系的随机现象。
2.期望值与方差(expected value & variance )期望值是对随机变量所有可能结果的一个加权平均,权数就是每一结果发生的概率。
即:n n x p x p x E ++=...)(11 (12.1) 期望值仅仅可划了某种随机变量可能结果的平均值,但并没有反映出随机特征,即没有反映随机变量波动程度的大小。
方差是随机变量离差平方的数学期望,即:2)]([)(x E x p x Var i i −= (12.2)比如:两种股票X 、Y 现在的价格均为10元,一年后可能的价格及其概率分布为:表12-1 股票X 和Y 的价格和概率分布价格 8 12 15 X 概率 0.4 0.5 0.1 价格 6 12 23 Y概率 0.4 0.5 0.17.10151.0125.084.0)(=⋅+⋅+⋅=X E ; 61.5)(=X Var 7.10231.0125.064.0)(=⋅+⋅+⋅=Y E ; 81.24)(=Y Var 方差越大,说明随机变量的波动性越大,因而风险也越大。