结构化学课件第五章
- 格式:ppt
- 大小:1.16 MB
- 文档页数:47
§5.0 预备知识5.0.1 数学复习第五章 分子轨道理论 P1055.0.2 线性变分法原理125.0.1 数学复习一、矩阵m×n 个数排成 m 行、n 列的矩形数 表,谓之。
(1) 矩阵相等⎛ a 11 a12 a 13 La 1n ⎞ ⎟ ⎜ ⎜ a a a La 2n ⎟ A m×n= ⎜ 21 22 23 = ( a ij ) m×n LLLLLLL ⎟ ⎟ ⎜ ⎟ ⎜a a ⎝ m1 m2 am3 Lamn ⎠例如:⎛a a ⎞ ⎛b b ⎞ ⎜ ⎟ ⎜ ⎟ A = ⎜ 11 12 ⎟ 和 B = ⎜ 11 12 ⎟ ⎝ a 21 a 22 ⎠ ⎝b 21 b 22 ⎠a ⎞ ⎛b b ⎞ a =b ,a =b ⎛a 所谓 A = B, 或 ⎜ 11 12 ⎟ = ⎜ 11 12 ⎟ 即是 11 11 12 12 ⎜ a a ⎟ ⎜b b ⎟ a 21 = b 21 , a 22 = b 22 ⎝ 21 22 ⎠ ⎝ 21 22 ⎠所谓 AB = C a b +a b ⎞ ⎛ a a ⎞⎛ b b ⎞ ⎛ c c ⎞ ⎛ a b + a b 即 ⎜ 11 12 ⎟⎜ 11 12 ⎟ = ⎜ 11 12 ⎟ = ⎜ 11 11 12 21 11 12 12 22 ⎟ ⎜ a a ⎟⎜b b ⎟ ⎜ c c ⎟ ⎜ a b + a b a b + a b ⎟ 22 22 ⎠ ⎝ 21 22 ⎠⎝ 21 22 ⎠ ⎝ 21 22 ⎠ ⎝ 21 11 22 21 21 12若( ij)×n = bij)×n a m ( mm×n 个等式则 aij = bij (i =1, 2,L, m ; j =1,2,L, n)(2) 矩阵的乘积A = (a ij) m×n 与 B = (b ij) n×P 的乘积,记为 AB = Cm× P = (cij ) m×Pc ij = ∑ a i k b k j = a i1 b 1 j + a i 2 b 2 j +L+ a i n b n j (i =1, 2,L, m ; j =1,2,L, n)k =1 n⎛ a11 a12 ⎞ ⎛ x1 ⎞ ⎛ b1 ⎞ ⎟⎜ ⎟ ⎜ ⎟ 例如:⎜ ⎜ a a ⎟ ⎜ x ⎟ = ⎜b ⎟ ⎝ 21 22 ⎠ ⎝ 2 ⎠ ⎝ 2 ⎠3⎧ a11 x1 + a12 x2 = b1 可写为: ⎨ ⎩a21 x1 + a22 x2 = b24二、m×n 阶线性代数方程组的缩写 二、mm个方程,n个未知数的一次代数方程组: 个方程,n若令系数矩阵A、未知数矩阵X和常数矩阵B 若令系数矩阵A、未知数矩阵X和常数矩阵B⎛ a 11 a12 a 13 La 1n ⎞ ⎜ ⎟ ⎜ a a a La 2n ⎟ A = ⎜ 21 22 23 LLLLLLL ⎟ ⎜ ⎟ ⎜ a a a La ⎟ mn ⎠ ⎝ m1 m2 m3⎛ x1 ⎞ ⎜ ⎟ ⎜x ⎟ X =⎜ 2 ⎟ M ⎜ ⎟ ⎜x⎟ ⎝ n⎠ ⎛ b1 ⎞ ⎜ ⎟ ⎜b ⎟ B =⎜ 2 ⎟ M ⎜ ⎟ ⎜b ⎟ ⎝ m⎠⎧ a11 x1 + a12 x2 +L+ a1n xn = b1 ⎪ a x + a x +L+ a x = b ⎪ 21 1 22 2 2n n 2 ⎨ ⎪ LLLLLLLLLLL ⎪am1 x1 + am2 x2 +L+ amn xn = bm ⎩则,方程组可表示为:AX = B⎛ a 11 a12 a 13 La 1n ⎞ ⎛ x1 ⎞ ⎛ b1 ⎞ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎜ a 21 a22 a 23 La 2n ⎟ ⎜ x2 ⎟ ⎜ b2 ⎟ ⎜ LLLLLLL ⎟ ×⎜ M ⎟ = ⎜ M ⎟ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜a a ⎝ m1 m2 am3 Lamn ⎠ ⎝ xn ⎠ ⎝ bm ⎠此式可缩写为:∑a xj =1nij j= bii =1, 2, 3,L, m例如:5⎧ a1 x1 + b1 x2 = c1 ⎨ ⎩a2 x1 + b2 x2 = c2⎛ a1 b1 ⎞⎛ x1 ⎞ ⎛ c1 ⎞ ⎟⎜ ⎟ ⎜ ⎟ 可写为: ⎜ ⎜ a b ⎟⎜ x ⎟ = ⎜ c ⎟ ⎝ 2 2 ⎠⎝ 2 ⎠ ⎝ 2 ⎠61三、行列式a 11 a12 a 13 La 1n a 21 a22 a 23 La 2nLLLLLLL行列式给出了各 个元素之间的一 个运算结果。
第5章目录5.1 非金属元素的结构化学:8-N法则5.2 非共轭分子几何构型与VSEPR规则5.3 分子几何构型与Walsh规则5.4 共轭分子与SHMO法5.4.1 丁二烯离域大π键的SHMO处理5.4.2 简并轨道的求解与等贡献规则5.4.3 直链和单环共轭体系本征值的图解法5.4.4 分子图:π电子密度、π键级、自由价5.4.5 共轭效应5.4.6 共轭分子在现代科技中的应用5.4.7 超共轭效应5.5 饱和分子的正则轨道与定域轨道5.6 缺电子分子的结构5.6.1 缺电子原子化合物的三种类型5.6.2 硼烷中的多中心键5.6.3 金属烷基化合物中的多中心键5.7 等瓣类似性关系5.7.1 等瓣类似性概念5.7.2 八面体构型金属-配体碎片与有机碎片的等瓣类似性5.7.3 其他构型的金属-配体碎片与有机碎片的等瓣类似性5.7.4 各种配位的分子碎片的等瓣类似关系小结5.7.5 等瓣类似性原理的应用实例5.8 多原子分子的谱项5.8.1 电子组态与分子谱项5.8.2 荧光与磷光5.9 配位场理论5.9.1 晶体场理论(CFT)5.9.2 配位场理论(LFT)5.9.3 T-S图与电子光谱5.10 分子轨道对称性守恒原理5.10.1 前线轨道理论5.10.2 相关图理论与金属相比, 非金属的数量要少得多。
目前在元素周期表中有110多种元素,非金属元素只占20余种, 分布在p 区(除H 的位置有不同看法外)。
在p 区中,整个一列稀有气体都是非金属元素,其余非金属元素很有规律地占据了右上角区域。
非金属元素数量虽少,但成键规律、结构特征都与金属元素有所不同。
非金属单质中定域共价键占主导地位,与金属单质中金属键占主导地位形成鲜明的对照。
金属键没有饱和性和方向性。
对于金属单质结构,几何因素起重要作用, 大多数金属单质晶体采取简单的密堆积结构。
共价键有饱和性和方向性。
非金属原子以共价单键结合时,周围通常配置8-N个原子,非金属间化合物配位也如此。
第五章分子结构Ⅲ计算化学基础(讲座)§5.0 计算化学发展背景5.0.1 计算机的发展—硬件背景计算机的硬件高速发展计算速度高速增长大量原来无法想象的计算可以轻易完成2005.11 TOP51. DOE/NNSA/LLNL 280.62. IBM Thomas J. Watson Research Center 91.293. DOE/NNSA/LLNL 63.394. NASA/Ames Research Center/NAS 51.875. Sandia National Laboratories 38.27 2006.11 TOP51. DOE/NNSA/LLNL 280.62. NNSA/Sandia National Laboratories 101.43. IBM Thomas J. Watson Research Center 91.294. DOE/NNSA/LLNL 75.765. Barcelona Supercomputing Center 62.63 2007.11 Top 51. DOE/NNSA/LLNL BlueGene 478.22. Forschungszentrum Jülich1673. New Mexico Computing Applications Center 1274. Computational Research Lab. TATA SONS 1185. Swedish Government Agency 103 2008.11 Top 51. DOE/NNSA/LANL Roadrunner11052. Oak Ridge National Lab Jaguar10593. NASA/Ames Res Center Pleiades4874. DOE/NNSA/LLNL BlueGene/L4785. Argonne National Laboratory BlueGene/P4502009.11 Top51. Jaguar -Cray XT5-HE Opteron Six Core2.6 GHz (Oak Ridge National Laboratory)17592. Roadrunner -BladeCenter QS22/LS21 Cluster, PowerXCell 8i3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband (DOE/NNSA/LANL)10423. Kraken XT5 -Cray XT5-HE Opteron Six Core 2.6 GHz (National Institute for Computational Sciences/University of Tennessee)831.74. JUGENE -Blue Gene/P Solution(Forschungszentrum Juelich (FZJ))825.55. Tianhe-1-NUDT TH-1 Cluster, Xeon E5540/E5450, ATI Radeon HD 4870, Infiniband (National SuperComputer Center in Tianjin/NUDT)563.1TOP10 2010.61.Jaguar-Oak Ridge National Laboratory17592.Nebulae-Dawning TC3600 国家超级计算深圳中心12713.Roadrunner-DOE/NNSA/LANL10424.Kraken XT5-Cray XT5-HE National Institute forComputational Sciences/University of Tennessee831.75.JUGENE-Blue Gene Forschungszentrum Juelich825.56.Pleiades-SGI Altix ICE NASA/Ames ResearchCenter/NAS772.77.Tianhe-1国家超级计算天津中心563.18.BlueGene/L-DOE/NNSA/LLNL478.29.Intrepid-Blue Gene Argonne National Laboratory458.610.Red Sky-Sun Blade Sandia National Laboratories433.5TOP10 2010.111.Tianhe-1国家超级计算天津中心25662.Jaguar-Oak Ridge National Laboratory17593.Nebulae-Dawning TC3600 国家超级计算深圳中心12714.TSUBAME 2.0 GSIC Center, Tokyo Institute ofTechnology 11925.Hopper DOE/SC/LBNL/NERSC 10546.Tera-100 Commissariat a l'Energie Atomique(CEA)10507.Roadrunner-DOE/NNSA/LANL10428.Kraken XT5-Cray XT5-HE National Institute forComputational Sciences/University of Tennessee831.79.JUGENE-Blue Gene Forschungszentrum Juelich825.510.Cielo-DOE/NNSA/LANL/SNL816.6Cray XE6 12-core 2.1 GHzHopperHP ProLiant SL390s G7 Xeon 6C X5670,Nvidia GPUTSUBAME 2.0 Dawning TC3600 Blade, Intel X5650,NVidia Tesla C2050 GPUNebulae Cray XT5-HE Opteron 6-core 2.6 GHz JaguarNUDT TH MPP, 14336颗至强X5670处理器(六核,2.93GHz 主频),GPU 7168块Tesla M2050计算卡(1.15GHz ,双精度浮点515Gflops 、单精度浮点1.03Tflops)Tianhe-1A“南开之星”800个Xeon 3.06G CPU, 400个节点,实测计算能力最终达到了3.231万亿次,实测效率达到68.74% TOP 20(预测)Top 42(2004.6)Top 61(2004.11)Top135(2005.11)Top235 (2006.6)Top348 (2006.11)跌出Top500(2007.6 第500名4.005万亿)(2007.11 第500名5.93万亿)(2008.11 第500名12.60万亿)(2009.11第500名20.051万亿)1国家超算中心-天津255-257 Service Provider3国家超算中心-深圳261,262 Engineering Company28中科院过程工程研究所267,268 Telecommunication Company 35上海超算中心344-347 Network Company68中科院网络中心359 Network Company154Engineering Company 368 Telecommunication Company 172Telecommunication Company 394 吉林大学210Telecommunication Company 417-422 Internet Service211Telecommunication Company 438 Telecommunication Company 230Telecommunication Company 441 Telecommunication Company 243-245Engineering Company 442,443 Service Provider246-248Network Company 488 南京大学5.0.2 软件背景•软件的发展→使用户勿需具备高深的理论知识,只要有一般的计算机应用能力,就可以很容易地完成许多计算化学的简单工作。