结构化学 第五章解析
- 格式:ppt
- 大小:2.14 MB
- 文档页数:42
结构化学第五章多原子分子的结构和性质多原子分子是由两个或更多个原子通过共价键连接在一起的分子。
在结构化学的研究中,对多原子分子的结构和性质进行分析是非常重要的。
本章主要介绍多原子分子的键角、电荷分布、分子极性以及它们的几何结构等方面的内容。
首先,多原子分子的键角是指由两个原子和它们之间的共价键所形成的夹角。
键角的大小直接影响分子的空间构型和立体化学性质。
结构化学家通过分析分子的键角可以确定分子的几何结构。
一般来说,当原子间的键角接近于109.5°时,分子的几何结构为四面体形;当键角接近120°时,分子的几何结构为三角锥形;当键角接近180°时,分子的几何结构为线性形。
其次,多原子分子的电荷分布对分子的性质起着重要的影响。
分子中的原子会通过共价键共享电子,形成电子云密度的分布。
根据电负性差异,原子会对电子云产生一定程度的吸引或排斥,并形成了分子中的正负电荷分布。
根据这种电荷分布,可以判断分子的极性。
当分子的正负电荷分布不平衡时,就会形成极性分子,如水分子;而电荷分布平衡时,就会形成非极性分子,如二氧化碳分子。
另外,多原子分子的分子极性也与分子的几何结构密切相关。
分子的几何结构会影响分子的偶极矩,从而决定分子的极性。
当一个分子的几何结构对称时,分子的偶极矩为零,分子为非极性分子;而当分子的几何结构不对称时,分子的偶极矩不为零,分子为极性分子。
例如,二氧化碳分子由于O=C=O的线性结构使得分子的偶极矩为零,因此二氧化碳是非极性分子;而水分子由于O-H键的角度小于180°,使得分子的偶极矩不为零,是极性分子。
在多原子分子中,还存在着共振现象。
共振是指在分子中一些共价键的原子成键和非键电子位置可以相互交换的现象。
共振的存在使得分子的键长和键能难以准确确定,同时影响分子的稳定性和反应性质。
共振的存在对于解释一些分子性质,如分子的稳定性和电子云的分布具有重要作用。
总之,多原子分子的结构和性质是结构化学研究中的重要内容。