淀粉微球的制备及应用研究进展
- 格式:pdf
- 大小:230.08 KB
- 文档页数:4
淀粉微球制备及其载药性能的研究淀粉是一种普遍存在的有机物质,在食品加工、医药、纺织等领域有着重要的地位。
随着医学技术的发展,淀粉微球被越来越多地用于药品载体。
在赋予药物更高的生物有效性、保持药物长时间体外平衡性、延长药物稳定性和提高药物质量方面,淀粉微球显示出更为优越的特性,发挥重要的作用。
淀粉微球的制备主要包括化学反应和物理学反应,如水解、沉淀、分散等,以及层析、凝胶结晶等。
淀粉微球的特殊形状提供空间特性,能够有效提高与药物的亲和力,使药物的溶出时间延长。
淀粉微球可以用来抗肿瘤,由于其易于与细胞内活性物质结合,因此能有效吸附肿瘤细胞。
此外,淀粉微球具有低免疫原性,可以用于生物体内的药物载体系统,促进有效的药物释放,改善药物的稳定性和生物利用性,延长药物的有效治疗时间。
淀粉微球的载药性能主要取决于淀粉的结构、粒径和表面性质。
淀粉采用不同的改性处理方法,可以增加其载药性能,如加速药物溶出速率、改善药物的活性性能、提高口服吸收等。
为了提高淀粉微球的载药性能,采用包括电子头、纳米纤维、糖基化和离子交换等改性技术,使淀粉微球具有更好的药物载体性能。
淀粉微球具有优异的生物相容性、可控性和低免疫原性,用于药物递送有巨大潜力。
目前,新型淀粉微球的研究仍处于较早期,仍需进一步深入研究其构筑和药物释放行为。
未来,淀粉微球将发挥更大的作用,为药物释放提供更高的生物活性和药物治疗效果。
总之,淀粉微球是一种新型药物载体,具有优越的特性,可以与各种药物载体系统结合,有助于药物安全、高效地释放,以达到有效的治疗效果,并且淀粉微球还是一种可控、可重复使用的药物载体,易于制备和大规模生产,用来替代传统的药物载体系统。
作为一项新的研究方向,淀粉微球的研究在药物递送等领域具有重要的意义。
纳米淀粉纳米淀粉微球是一种原料价格低廉、生物兼容性较好并可生物降解的药物载体。
作为一种粒径小于1um的载体,其表面积和表面能剧增,吸附能力和吸附速度大大提高,从而提高淀粉微球的载药量,缩短达到吸附平衡的时间。
从带电性来分,淀粉微球可分为阴离子、阳离子及非离子型淀粉微球;从磁性的角度来分,淀粉微球有磁性和非磁性微球。
磁性淀粉微球一般为核壳式结构,淀粉组成壳层,磁性金属氧化物组成核心,目前常用的金属氧化物一般为Fe3O4。
纳米淀粉在生物体内具有一定的可变形性,能够根据血管丛的微环境来改变自己的形状;经酶降解时,微球的骨架崩解前其载药能力可保持相对长的时间,有效延长所载药物的释放时间,提高药物的疗效。
纳米淀粉微球具有生物相容性、无毒、无免疫原性,且储存稳定,还具有穿过组织间隙并被细胞吸收、靶向、缓释、高效、多种给药途径等优点。
此外,纳米淀粉微球的结构、物理化学性质可在制备过程中进行控制,以改善其载药性能。
纳米淀粉微球在水中膨胀,具有可变性,在血液循环过程中能够根据血管微环境来改变形状,在酶的作用下,在骨架崩解前形态能保持相当长的时间,有利于其载人体内分布运转和靶区浓集,这无论是对靶向还是控释性都是有利的,在药物输送方面具有广阔的应用前景。
制备方法:目前淀粉微球的制备方法主要有物理法、化学法及反向微乳液法:(1)物理法:球磨技术是制备淀粉微球的物理方法,工作原理是:以乙醇或水为介质,淀粉颗粒在机械力的作用下发生破碎。
这种方法制备的淀粉微球粒径较大,不均匀,动力消耗大,成本高,少部分淀粉颗粒外表面破裂、粗糙,水解、酸解速度大大加快;其中个别颗粒表面虽没有任何变化,但内部已经破裂。
(2)化学法:化学共沉淀法一般用来制备磁性淀粉微球。
在制备中,一般把含有Fe2+和Fe3+的溶液在碱性条件下混合生成沉淀,然后用淀粉将其包埋,得到磁性淀粉微粒。
这类微球除具有生物相容性好、无毒和药物缓释等特性外,更重要的是具有磁性,在体外磁场引导作用下实现定向作用于靶组织的目的,其载药性和稳定性优于磁性明胶微球。
2024年浅谈多孔淀粉的制备和应用多孔淀粉简介多孔淀粉是一种经过特殊处理,内部含有大量微孔的淀粉材料。
这些微孔赋予了多孔淀粉优异的吸附性能、缓释性能以及生物相容性,使其在多个领域,特别是食品、医药和环保等领域,展现出广阔的应用前景。
多孔淀粉的基本结构与普通淀粉类似,均由α-葡萄糖分子通过α-1,4-糖苷键连接而成。
但其独特的孔道结构,使得其在许多性能上超越了普通淀粉。
这些孔道可以是规则排列的,也可以是随机分布的,孔的大小和形状也可以通过制备过程进行调控。
制备多孔淀粉的方法多孔淀粉的制备方法多种多样,常见的包括物理法、化学法和生物法。
物理法物理法主要利用物理手段,如热处理、微波处理、超声波处理等,使淀粉颗粒内部产生空腔或裂纹,从而形成多孔结构。
这种方法操作简单,但制得的多孔淀粉孔道结构不够均匀,且孔径较大。
化学法化学法通过化学试剂与淀粉中的羟基反应,使淀粉分子链断裂,并在淀粉颗粒内部形成孔洞。
常见的化学法有酸水解法、碱水解法和酶水解法等。
这种方法可以控制孔的大小和分布,但可能引入有毒物质,影响多孔淀粉的生物相容性。
生物法生物法利用微生物或酶的作用,在淀粉颗粒内部产生孔洞。
这种方法条件温和,绿色环保,但操作较为复杂,且制得的多孔淀粉孔道结构不易控制。
制备过程中的关键参数在制备多孔淀粉的过程中,关键参数的选择对最终产品的性能具有决定性影响。
这些参数包括:反应时间:反应时间过短,淀粉颗粒内部无法完全形成孔洞;反应时间过长,则可能导致淀粉颗粒过度破碎,失去原有形态。
反应温度:温度过低,反应速率慢,形成的孔洞少;温度过高,则可能导致淀粉糊化,影响多孔结构的形成。
反应物浓度:浓度过低,反应效果不明显;浓度过高,则可能导致淀粉颗粒过度交联,降低吸附性能。
pH值:不同的pH值会影响反应速率和反应路径,进而影响多孔结构的形成。
多孔淀粉的表征与检测多孔淀粉的表征与检测是评价其性能的重要手段。
常见的表征方法包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)等。
引言:
淀粉基微球是一种新型的功能性材料,具有广泛的应用前景。
目前,
制备淀粉基微球的方法有很多种,其中反相乳液法是一种常用的方法。
本文将介绍反相乳液法制备淀粉基微球的过程及其表征方法。
正文:
一、反相乳液法制备淀粉基微球
反相乳液法是一种将水相液滴包覆在油相中的方法,通过控制反相乳
液的形成和稳定,可以制备出具有不同形态和大小的微球。
反相乳液
法制备淀粉基微球的步骤如下:
1. 溶液制备:将淀粉、十二烷基硫酸钠、十二烷基硫酸钾、十二烷基
苯磺酸钠等物质按一定比例溶解在去离子水中,制备出淀粉基溶液。
2. 反相乳液制备:将淀粉基溶液滴入含有表面活性剂的油相中,通过
机械搅拌或超声波处理,使淀粉基溶液形成微小液滴,然后在油相中
形成反相乳液。
3. 固化处理:将反相乳液中的淀粉基液滴通过加热或添加交联剂等方
法进行固化处理,形成淀粉基微球。
二、淀粉基微球的表征
淀粉基微球的表征主要包括形态、粒径、表面性质等方面。
1. 形态表征:通过扫描电镜(SEM)观察淀粉基微球的形态,可以了
解微球的形状、表面形貌等信息。
2. 粒径表征:通过粒度分析仪等仪器测定淀粉基微球的粒径分布,可
以了解微球的大小分布情况。
3. 表面性质表征:通过测定淀粉基微球的比表面积、孔径分布等参数,可以了解微球的表面性质和孔隙结构。
结论:
反相乳液法是一种制备淀粉基微球的有效方法,通过对微球的形态、
粒径、表面性质等方面进行表征,可以了解微球的性质和应用前景。
淀粉基微球具有广泛的应用前景,可以用于药物缓释、食品添加剂等
领域。
交联淀粉微球的制备与载药及释药性能摘要:以三偏磷酸钠为交联剂,通过5h的50℃的油包水乳化交联反应,制备交联阴离子淀粉微球。
激光衍射技术和扫描电子显微镜检查法表明微粒呈现球形,粒径分布较窄,有良好的可分散性。
此外,研究了其载药和释放性能,以亚甲蓝为模型药物作单因素实验。
研究表明亚甲蓝的载药率受载药时间、溶剂、载药温度和药物浓度的显著影响。
载药时间和药物浓度增加会使得载药量增加,而且在0.9%的NaCl溶液中和室温条件下,载药量达到最大值。
此外,释放包括2个主要过程,即最初的破裂释放过程和后来的持续溶胀控释过程。
关键词:交联淀粉微球,药物装载,药物释放,扫描电子显微镜检查法,粒径1 引言淀粉是由葡萄糖单位组成的生物所能分解的碳水化合物,大量存在于许多不同种类的农产品中,如大米、小麦、玉米和土豆(Chan et al., 2007; Zhou et al., 2006)。
在食品和工业领域中可以作为增稠剂、胶凝剂、填充剂和保水剂(Che et al., 2007; Tester,Karkalas, & Qi, 2004)。
对淀粉进行变性是为了克服其不足之处来扩大应用领域,如剪切阻力小、耐热性弱、不易热分解和凝沉(Jobling, 2004; Raina, Singh, Bawa,& Saxena, 2007)。
在不同的变性淀粉中,交联淀粉微球具有强稳定性、强耐热性、高剪切力和强耐酸性(Kim & Lee, 2002),并且由于其生物降解能力、生物适合性、无毒性、贮存稳定、成本效率高和制造方法简单,它成为研究最多的药物载体(Mundargi,Shelke, Rokhade, Patil, & Aminabhavi, 2008)。
因此,在递药系统中,特别是鼻内的递药系统,交联淀粉微球是很有前景的载体(Mao, Chen, Wei, Liu, & Bi, 2004)。
122食品前沿研究FOOD FRONTIRE RESEARCH研究表明,利用纳米级淀粉的磁性和带电性选择吸附白酒中的有害物质,再通过过滤,可将新酒中的乙醇分子和水分子进行疏导,加速氢键的形成,达到陈化效果,能有效缩短白酒的陈化周期,降低白酒中的有害物质,同时避免传统白酒需要活性炭处理带来的各种不便,增加白酒中的粮香味。
一、纳米淀粉微球的制备纳米淀粉微球的制备方式多样,主要方法如下:1.物理法。
球磨技术是制备淀粉微球的物理方法,工作原理是乙醇或水为介质,淀粉颗粒在机械力的作用下发生破碎,这种方法制备的淀粉微球粒径较大、不均匀、动力消耗大、成本高,少部分淀粉颗粒外表面破裂、粗糙,水解、酸解速度大大加快,其中个别颗粒表面虽然没有变化,但内部已经破裂。
2.化学法。
在制备过程中,一般把含有Fe2+和Fe3+的溶液在碱性条件下混合生成沉淀,然后用淀粉将其包埋,得到磁性淀粉微粒。
这类微球除具有生物相容性好、无毒等特性外,更重要的是具有磁性,在体外磁场的引导作用下实现定向作用于靶组织的目的。
3.反向微乳液法。
反向微乳法是制备纳米淀粉微球的新方法,其过程为:将淀粉溶解在水里,形成均匀、稳定、透明的微乳液,在快速搅拌的状态下,加入适量的交联剂,使处于溶解状态的淀粉分子交联成细小的微球从液相析出。
二、应用纳米级淀粉微球提升白酒过滤效果的注意事项纳米级淀粉微球技术可以提升白酒过滤效果的原理是:首先,纳米淀粉微球可以吸附过滤白酒中的有害物质;其次,利用纳米淀粉微球的磁性和带电性,可以促进水分子中的氢离子和乙醇分子的羟基离子缔合成氢键,使酒老熟更加迅速。
因过滤后的白酒中不含杂醇油、塑化剂、双酚A等不利于人体健康的物质,所以人们饮用后不会上头、不会口干,无不良反应。
需要注意的是,影响该项目成功与否的条件有以下几个,企业需要引起注意:1.配比相应的浓度、处理相应的时间、处理的有关方法,是该项目成败的主要原因;2.用精密纳米级过滤机,过滤次数要严格控制,过滤次数少了,达不到过滤效果,过滤次数多了,会对酒体产生影响。