数学人教版六年级下册运用比例尺解决实际问题
- 格式:doc
- 大小:12.00 KB
- 文档页数:2
人教版六年级下册数学第四单元比例应用题训练1.在比例尺是1∶3000000的地图上,量得台城到深圳的距离是15厘米,台城到深圳的实际距离是多少千米?2.在比例尺是1∶5000000的地图上,量得甲、乙两地相距30厘米。
两列火车同时从甲、乙两地相对开出,甲车每小时行55千米,乙车每小时行65千米,几时后两车相遇?3.小丽家4月份用了7吨水,水费是21.7元。
5月份她们家用了10吨水,5月份的水费是多少元?(用比例解答)4.一辆汽车3小时行驶186千米,照这样的速度,从甲地到乙地需行驶10小时,甲乙两地相距多少千米?(用比例解)5.在比例尺是1∶6000000的地图上,AB两地间的距离是16厘米。
(1)AB两地间的实际距离是多少千米?(2)一列火车由A到B用了8小时,火车每小时行多少千米?6.一幅地图的比例尺是1∶2000000,在图上量得A、B两个港口的距离是8厘米,一艘货轮于上午8时从A港口出发,平均速度为每小时40千米,这艘货轮到达B港口的时间为多少时?7.小明和小芳两人压岁钱的比是4∶3,开学时交学费用去钱的比是18∶13,这时小明和小芳各剩下36元、48元,求原来两人各有多少元压岁钱?试卷第1页,共3页8.小兰要打一篇文稿,若每分钟打字75个,则40分钟刚好打完。
若每分钟打字60个,则多少分钟刚好打完?(用比例知识列解方程解答)9.在一幅比例尺是1∶5000000的地图上,量得A、B两地之间铁路线长12厘米。
甲、乙两列火车同时从A、B两地相对开出,3小时后相遇,已知甲、乙两列火车的速度比是11∶9。
两车相遇时,甲车行了多少千米?10.用边长为2.5分米的方砖铺一间教室的地面,需要600块,如果改用边长为5分米的方砖铺地,那么需要方砖多少块?(用比例知识解答)11.小红的身高是1.6米,她的影子长是2.5米,如果同一时间、同一地点测得一棵树的影子长是4米,这棵树有多高?12.一间房子要用方砖铺地,用边长是4分米的方砖,需用96块,如果改用面积是24平方分米的方砖,需用多少块?(用比例解)13.妈妈用50毫升鲜果汁和200毫升水调制一杯饮料,按这个比调制,80毫升鲜果汁中应加入多少毫升水?14.一块三角形花木种植地,它的平面图的比例尺是1∶3000,如果图上这块地的底是4cm,高是3cm,这块地的实际面积是多少平方米?15.秦老师和张老师到文具店买同样的钢笔奖励三好学生。
人教版数学六年级下册《用比例解决问题》教学设计一. 教材分析人教版数学六年级下册《用比例解决问题》是学生在掌握了比例的基本知识的基础上,进一步运用比例解决实际问题的学习内容。
本节课通过具体的案例,让学生理解比例在生活中的应用,培养学生运用比例解决问题的能力。
教材内容共安排了4个课时,本教学设计为第一课时。
二. 学情分析六年级的学生已经掌握了比例的基本知识,能够理解比例的概念,会解比例方程。
但在实际应用比例解决问题时,还需要进一步的引导和培养。
学生的学习兴趣较高,愿意参与课堂讨论和实践活动。
三. 教学目标1.理解比例在解决实际问题中的作用。
2.学会运用比例解决问题。
3.培养学生的动手操作能力和团队协作能力。
四. 教学重难点1.重点:运用比例解决问题。
2.难点:灵活运用比例解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实际案例,引导学生理解和运用比例。
2.案例分析法:分析具体案例,让学生体会比例在解决问题中的作用。
3.小组讨论法:分组讨论,培养学生的团队协作能力。
4.实践操作法:动手操作,巩固比例知识。
六. 教学准备1.教学课件:制作课件,展示案例和练习题。
2.练习题:准备一些实际问题,供学生练习。
3.小组活动准备:划分小组,准备讨论材料。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的图片,如购物、行程等问题,引导学生思考如何用比例解决问题。
2.呈现(10分钟)呈现一个具体的案例,如购物问题:一件衣服原价60元,现在打8折出售,求打折后的价格。
引导学生分析问题,发现可以用比例解决问题。
3.操练(10分钟)学生分组讨论,每组选择一个案例,运用比例解决问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)呈现一组练习题,让学生独立完成。
题目内容包括购物、行程、比例尺等问题。
完成后,教师进行讲解和点评。
5.拓展(10分钟)让学生举例说明生活中用比例解决问题的例子,并进行交流分享。
6.小结(5分钟)教师引导学生总结本节课所学内容,巩固比例解决问题的方法。
人教版六年级下册数学第四单元比例应用题1.妈妈买6千克苹果用了30元。
买8千克这种苹果需要多少钱?(用比例解答)2.在一幅比例尺是1:500000的地图上,量得南宁地铁1号线的长度大约是6.4cm。
实际长度大约是多少千米?3.一辆普通自行车的前齿轮有48个齿,如果前齿轮转动21圈,则后齿轮同时转动72圈。
这辆自行车的后齿轮有多少个齿?4.在比例尺为1:6000000的地图上,量得甲乙两地相距7.5厘米,甲乙两车同时从两地相向开出。
三小时后相遇,已知甲乙两车的速度比是2:3,甲乙两车速度各是多少?5.在一幅地图上用2厘米的线段表示实际距离600千米,这幅地图的比例尺是多少?一条长480千米的高速公路,在这幅地图上是多少厘米?6.一个工程队做一项工程,6天完成了它的310。
照这样的工作效率,剩下的任务还需要多少天才能完成?(用比例解)7.甲乙两班共有学生105人,如果两个班各转走3名学生,则甲乙两班的人数比是4:5,两个班原来各有多少人?(用比例解)8.在一幅比例尺是1:5000的地图上,量得一块长方形的长是3厘米,宽是2.4厘米.这块地的面积是多少公顷?9.在一幅比例尺是1:2000000的地图上,量得甲、乙两地间的距离是8厘米,甲、乙两地实际相距多少千米?如果在另一幅地图上量得甲、乙两地间的距离是10厘米,则另一幅地图的比例尺是多少?10.某工程队铺设一段下水道,原计划每天铺设20米,15天完成。
实际每天多了5米,实际多少天完成了任务?(用比例解)11.运输公司的一辆汽车从甲地往乙地运送物资,原计划每小时行75千米,4小时到达。
现在情况有所变化,需要3小时到达,每小时要行多少千米?(用比例解)12.小明和小英住在同一个小区。
小明家上个月用电102度,电费是61.2元。
小英家上个月用电85度,小英家上个月的电费是多少元?(用比例知识解答)13.小明的卧室面积是12平方米,给这个房间铺地板用去720元,他爸爸、妈妈的卧室面积是15平方米,要用多少元?(用比例解)14.小明买4支圆珠笔用了6元。
比例应用题(专项训练)20232024学年数学六年级下册人教版典例分析一.工程队修一段公路,原计划每天修4.8千米,18天修完。
实际提前2天修完,实际每天修多少千米?【答案】5.4千米【分析】根据题意可知:工作总量是一定的,工作效率和工作时间成反比例关系,设实际每天修x千米,据此列比例解答。
【详解】解:设实际每天修x千米。
(18-2)x=4.8×1816x=86.4x=86.4÷16x=5.4答:实际每天修5.4千米。
【点睛】明确工作总量一定,工作效率和工作时间成反比例关系,据此列出比例是解答本题的关键。
典例分析二.如图,学校大门在孔子雕像的正东方240米处。
1号教学楼在孔子雕像北偏东45°的200米处。
(1)分别计算出学校大门、1号教学楼到孔子雕像的图上距离。
(2)在图纸上画出学校大门和1号教学楼的位置。
【答案】(1)学校大门6厘米;1号教学楼5厘米(2)见详解【分析】(1)根据进率“1米=100厘米”以及“图上距离=实际距离×比例尺”,分别求出学校大门、1号教学楼到孔子雕像的图上距离。
(2)以图上的“上北下南,左西右东”为准,在孔子雕像的正东方画6厘米长的线段,即是学校大门;在孔子雕像的北偏东45°方向画5厘米长的线段,即是1号教学楼。
【详解】(1)240米=24000厘米24000×14000=6(厘米)200米=20000厘米20000×14000=5(厘米)答:学校大门到孔子雕像的图上距离是6厘米,1号教学楼到孔子雕像的图上距离是5厘米。
(2)如图:【点睛】本题考查比例尺的应用、根据比例尺画图以及根据方向、角度和距离确定物体的位置。
典例分析三.旗杆有多长?(1)操场上,同学们正在阳光下测量不同长度的竹竿、木棒、大树的长度及它们的影长,测量数据如表:实际长度(米)影长(米)实际长度与影长的比值跟踪训练1.在比例尺是1∶400000的地图上量得甲、乙两地的距离是6厘米。
人教版数学六年级下册用比例解决问题教案(优选3篇)〖人教版数学六年级下册用比例解决问题教案第【1】篇〗——《用比例解决问题》说课稿3篇《用比例解决问题》说课稿1说教学内容:教科书第59页的例5和相关的“做一做”。
说教学目标:1.掌握用正比例的方法解答相关应用题。
2.通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。
3.培养学生分析问题、解决问题的能力。
4.发展学生综合运用知识解决问题的能力。
说教学重点:掌握用正比例的方法解答应用题。
说教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。
说教法和学法:1.教法:创设情境,质疑引导。
经历用比例方法解决问题的过程,体验解决问题的策略,培养和发展学生的发散思维。
2.学法:理解分析与合作交流相结合。
说教学准备:教学挂图、小黑板说教学过程:一、联系实际,复习迁移1.判断下面每题中的两种量成什么比例?并说明理由。
(1)单价一定,总价和数量。
(2)我们班学生做操,每行站的人数和站的行数。
(3)速度一定,路程和时间。
(4)每吨水的价钱一定,水费和用水的吨数。
2.师:同学们,全社会都在节约用水,在和我们息息相关的用水问题里也藏有数学问题。
二、探索新知,培养能力1.教学例5(1)出示挂图:观察画面,说出题中告诉我们哪些信息?(2)出示例5:张大妈家上个月用了8吨水,水费是12.8元,李奶奶家用了10吨水,李奶奶家上个月的水费是多少?(3)提出:你能用以前学过的方法解答(4)学生试着解答,并汇报解法。
可能出现两种情况:生1:12.8÷8×10 生2:10÷8×12.8=1.6×10 =1.25×12.8=16(元) =16(元)(5)激励引新师:这两种方法都合理,还可以有什么方法解答呢?学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?师指出:这样的问题可以应用比例的知识解答。
比例的应用★知识概要1、比例尺1)数字比例尺:图上距离与实际距离的比。
前项是图上距离,后项是实际距离。
前项和后项的单位相同。
只能表示距离的比。
2)线段比例尺可以直观看出图上一厘米代表的实际距离。
2、正比例和反比例的应用:在实际问题中,两个呈比例的量,可以用比例的知识来解决。
1)两个成正比的量:比值相等列出比例方程。
2)两个成反比的量:乘积相等列出方程。
★精讲精练例1、(1)、化简。
20kg:10g = ___2000___: ____1____6 m : 120 cm = ___5___:____1____5cm: 250km=____1____:____500000____(2)、将线段比例尺化为数字比例尺0 20 40 60km1:2000000演练1、(1)、化简。
20km:15cm = ___4000____: ____3____6 cm : 150 m = ___1____:____2500____5cm: 24km=____1____:____480000____(2)、将线段比例尺化为数字比例尺0 30 60 90km1:3000000例2、(1)填表(2)一幅地图的比例尺为1 : 20000000,小芳在地图上量得广州到上海的 某条线路全长为7.5厘米。
那么广州到上海的这条线路实际距离是多少千米?实际距离:7.5x200=1500(千米)演练2、比例尺 图上距离 实际距离1:2000000 5cm 100km 15:17.5cm 5mm 1:7500002cm 15km(2)一幅地图的比例尺为 1 : 5000000,小新在地图上量得北京到上海的铁 路长度是29厘米。
一辆高速动车从北京南站出发,经过5小时到达 上海,这辆高速动车的时速是多少?实际距离:29÷50000001=145000000(厘米)=1450(千米) 速度:1450÷5=290(千米/小时)1599m30cm1:3000000例3、(1)学校篮球场平面图的比例尺为1 : 250,工程师在平面图上量得篮球场的长为11.2厘米,宽为6厘米。
人教版六年级下册数学第四单元比例应用题训练1.在比例尺为1:15000000 的地图上,量得两地间的距离为18 cm。
甲、乙两列动车同时从两地相对开出,6 小时后相遇。
已知甲、乙两列动车的速度比为11:9,两车相遇时,甲车相驶了多少千米?2.在比例尺是20:1的图纸上,量得一个零件的长是2cm。
这个零件的实际长是多少毫米?3.在比例尺是的地图上,量得扬州到北京的距离为12cm。
如果一列火车以每小时160 km的速度于上午8时从扬州火车站开出,那么下午几时几分这列火车可到达北京?4.身高1.8m的李华在公园里观赏一尊雕像时,想知道雕像的高度。
他灵机一动,站到雕像旁边拍了一张合影,然后量得照片上的他高3 cm,雕像高8 cm。
雕像的实际高度是多少米?5.一幅地图,图上4 cm表示实际距离32km。
如果实际距离是144 km,图上距离是多少厘米?(用两种方法解答)6.淘淘早上8时从家出发,平均每小时骑行30 km,下午4:30到了目的地,中间休息3小时,如果将淘淘的骑行距离在比例尺1:300000的图上表示出来,图上距离应该是多少厘米?7.王大爷种了一块直角三角形的菜地,两条直角边共长10.8 m,它们的长度比是5:4。
将这块菜地用1:200的比例尺画在图上,这块菜地的图上面积是多少平方厘米?8.某工厂要加工1296个零件,前5天已经加工了240个。
照这样计算,余下的还需要多少天才能完成?(用解比例的方法解答)9.一杯糖水中放了20 g糖和400 g水。
(1)如果想用600g水调出一杯甜度相同的糖水,应放多少克糖?(2)如果想用600 g糖调出一杯甜度相同的糖水,应加多少克水?10.小刚在教学楼前测得自己的身高与影子的长度比为5:4,这时教学楼的影子长12米,教学楼的高度是多少米?11.在比例尺是1:1000 的地图上量得甲、乙两地相距4厘米。
如果画在比例尺是1:8000的地图上,应该画多长?12.学校给一间边长为6米的正方形教室铺地,需要地砖288块。
人教版数学六年级下册用比例解决问题教学设计(精推3篇)〖人教版数学六年级下册用比例解决问题教学设计第【1】篇〗教学设计教学目标1、使学生理解什么叫解比例,掌握解比例的方法,会解比例。
2、使学生能应用解比例的知识解决生活中的数学。
3、使学生感悟数学知识的魅力,感受到数学就在我们身边。
学情分析学生掌握比例的基本性质的基础上学习解比例。
重点难点掌握解比例的方法。
教学过程活动1【导入】导入新课1、上节课我们学习了一些比例的知识,谁能说说我们都学了比例的哪些知识(什么叫比例,比例的基本性质,应用比例的基本性质可以做什么.)2、好,下面我们就用比例的知识来解决一个问题,出示:6:2=( ):3你是怎样想的你的依据是什么师:如果我们知道比例中的任何三项就可以求出比例中的另外一个未知项。
这就是我们今天要研究的内容——解比例(板书课题)。
请同学们打开书第42页,阅读理解第一自然段,什么叫解比例。
(指名回答,并要求学生在书上标注,同时板书意义。
)教学意图:一是唤起学生对已有知识经验的回忆,索取对本节课相关的知识点;二是搭建从已知走向未知的桥梁,为学习新知提供合适的空间。
活动2【讲授】新授内容教学例2:师:有谁知道法国巴黎标志性建筑是什么哪些同学去过那你们知道它大概有多高师:老师告诉你们这座塔的高度是320米,在北京的“世界公园”里有一座埃菲尔铁塔的模型,它的高度与原塔的高度的比是1:10,同学们想知道这座模型的高是多少米吗出示例 2.那我们就用比例的知识来解决这个问题.(1)学生读题,理解题目里的条件和问题。
(2)学生试做,师生共评,指名板演。
分析:题目中的1:10你是怎样理解的(模型:实物=1:10)列比例需要四项,未知的项要怎样(设未知数X) 怎样用我们学过的知识解比例(先试做再小组交流,然后我们求同存异,总结出你们的方法。
指名板演,老师规范格式,对比方法。
两种方法:利用比例的基本性质改写成等积式;利用求比值方法。
六年级数学下册教案
用比例尺解决实际问题(1)
六1班黄晓霞
2017年3月31日第二节
教学目标:
1、进一步理解比例尺的意义,掌握利用比例尺求实际距离的方法。
2、在综合运用比例尺知识解决问题的过程中,感受数学知识和日常生活的密切联系,提高分析问题的能力。
教学重点:
掌握利用比例尺求实际距离的方法。
教具准备:
多媒体课件地图
教学过程:
一、复习导入
1、解比例练习
2、提问:什么是比例尺,怎样求一幅地图的比例尺。
导入新课:今天这节课我们就利用比例尺的相关知识来解决实际生活中的一些问题。
二、学习求实际距离
1、出示例2
(1)学生读题目,观察题目,在图中找出地铁一号线的位置。
(2)理解题意:已知条件是知道这幅图的比例尺是1:400000,苹果园到四惠东站的图上距离是7.8cm。
所求的问题是苹果园到四惠东站的实际距离是多少千米?
(3)学生分析题目,找出解题方法,根据“图上距离:实际距离=比例尺”,关系式,已经知道图上距离和比例尺,要求实际距离,可以用解比例的方法,学生尝试列方程解答。
(4)学生独立完成,教师评讲。
2、引出的第二种解题方法:图上距离÷比例尺=实际距离,学生独立解题,教师进行个别指导。
(强调学生注意单位的换算)
3、教师小结两种解题方法,鼓励学生灵活运用。
三、巩固练习
1、出示练习应用题,学生审题、解题,教师巡视,全班评讲,进一步熟练解题方法。
2、填表练习,先让学生独立完成,再点名学生回答,讲清解题方法。
四、实际运用
1、让学生拿出学具盒中的地图,分小组进行探究合作学习。
教师布置任务:在地图上选取任意两个城市,量出它们的图上距离,并且根据比例尺,求出它们之间实际距离。
2、学生合作测量和计算,教师随堂指导。
学生完成任务后,教师让学生分小组陈述测量的数据和计算结果,全班一起评议、讨论。
五、教师总结。
这节课,我们利用比例尺的知识解决了求实际距离的问题,一种方法是可以根据比例尺列方程来解答,另一种方法是可以利用关系式“图上距离÷比例尺=实际距离”来进行计算。
在计算过程中要注意单位的统一。
六、布置作业
完成同步导学——比例尺(2)。