点直线平面之间的位置关系知识点总结
- 格式:docx
- 大小:11.42 KB
- 文档页数:7
高中数学必修《点直线平面之间的位置关系》知识点高中数学必修的《点直线平面之间的位置关系》是一个重要的几何知识点,主要涉及直线与平面、点与直线、点与平面之间的位置关系。
这个知识点对于理解几何图形的形状和性质具有重要作用,也为后续的三角函数、向量等知识打下基础。
下面将详细介绍该知识点的内容。
一、直线与平面的位置关系1.平面方程:平面的一般方程为Ax+By+Cz+D=0,其中A、B、C为不能同时为0的实数,A、B、C为平面的法向量,D为常数项。
2.直线与平面的位置关系:(1)直线与平面相交:直线与平面相交可以有一个交点,也可以有无穷多个交点。
(2)直线含于平面:如果直线的所有点都在平面上,则直线被称为含于平面。
(3)直线与平面平行:如果直线与平面的交点集为空集,则直线与平面平行。
(4)直线与平面垂直:如果直线与平面的任意一条直线都垂直,则直线与平面垂直。
二、点与直线的位置关系1.点与直线的距离:点P(x0,y0)到直线Ax+By+C=0的距离公式为d=,Ax0+By0+C,/√(A^2+B^2)。
2.点到线段的距离:点P到线段AB的距离:(1)如果P在AB的延长线上,则距离为AP或BP的长度。
(2)如果P在线段AB的两边,则距离为点P到线段AB所在直线的距离。
(3)如果P在线段AB上,则距离为0。
三、点与平面的位置关系1.点在平面上:点P(x0,y0,z0)在平面Ax+By+Cz+D=0上的充要条件是Ax0+By0+Cz0+D=0。
2.点到平面的距离:点P到平面Ax+By+Cz+D=0的距离公式为d=,Ax0+By0+Cz0+D,/√(A^2+B^2+C^2)。
3.点关于平面的对称点:点P(x0,y0,z0)关于平面Ax+By+Cz+D=0的对称点的坐标为:(x',y',z')=(x0-2*Ax0/(A^2+B^2+C^2),y0-2*By0/(A^2+B^2+C^2),z0-2*Cz0/(A^2+B^2+C^2))。
必修2第二章 点、直线、平面之间的位置关系1.四个公理:公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内(此公理可以用来判断直线是否在平面内)。
符号语言:,,,A l B l A B l ααα∈∈∈∈ ⇒ ∈且。
公理2:过不在一条直线上的三点,有且只有一个平面。
三个推论:① 经过一条直线和这条直线外一点,有且只有一个平面; ② 经过两条相交直线,有且只有一个平面; ③ 经过两条平行直线,有且只有一个平面; (它们给出了确定一个平面的依据)。
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(这条公共直线即为两个平面的交线)。
符号语言:,,P P l P l αβαβ∈∈⇒=∈ 且。
公理4:平行于同一直线的两条直线互相平行(平行线的传递性)。
符号语言://,////a l b l a b ⇒且。
2.空间中直线与直线之间的位置关系(1)位置关系:两条直线⎧⎧⎪⎨⎨⎩⎪⎩相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点(2)异面直线:把不在任何一个平面内的两条直线叫做异面直线。
(3)两条异面直线所成的角:已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的锐角(或直角)叫异面直线,a b 所成的角(或夹角)。
(易知:夹角范围090θ<≤︒)(4)等角定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。
3.空间中直线与平面之间的位置关系直线l 与平面α//l l A l ααα⊂⎧⎪=⎧⎨⎨⎪⎩⎩直线在平面内()有无数个公共点直线与平面相交()有且只有一个公共点直线在平面外直线与平面平行()没有公共点4.空间中平面与平面之间的位置关系平面α与平面β//l αβαβ⎧⎨=⎩两个平面平行()没有公共点两个平面相交()有一条公共直线5.直线与平面平行的判定及其性质定理定理 定理内容 符号表示直线与平面 平行的判定平面外的一条直线与平面内的一条直线平行,则该直线与此平面平行ααα////a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄ 平面与平面平行的判定 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行βαααββ//////⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫=⊂⊂P b a b a b a 直线与平面平行的性质一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行b a b a a ////⇒⎪⎭⎪⎬⎫=⊂βαβα平面与平面平行的性质如果两个平行平面同时和第三个平面相交,那么它们的交线平行b a b a ////⇒⎪⎭⎪⎬⎫==βγαγβα(1)线面平行的其它判定方法 ①定义:直线与平面无公共点;②若两个平面平行,则在其中一个平面内的任意一条直线平行于另一个平面; 符号语言:αββα////a a ⇒⎭⎬⎫⊂; (2)面面平行的其它判定方法 ①定义:两个平面无公共点;②垂直于同一条直线的两个平面平行;符号语言:βαβα//⇒⎭⎬⎫⊥⊥a a ; ③平行于同一个平面的两个平面平行;符号语言:βαγβγα//////⇒⎭⎬⎫; ④如果一个平面内的两条相交直线平行于另一个平面内的两条相交直线,那么这两个平面互相平行;符号语言:βαβα//,,////⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫==⊂⊂B d b A c a d b c a dc b a ;6.直线与平面所成的角(1)直线与平面垂直:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α垂直,记作l α⊥。
点、直线、平面之间的位置关系一、线、面之间的平行、垂直关系的证明书中所涉及的定理和性质可分为以下三类:1、平行关系与平行关系互推;2、垂直关系与垂直关系互推;线面垂直判定定理线面垂直的定义两平面的法线垂直则两平面垂直面面垂直判定定理线面平行判定定理线面平行性质定理线面平行转化面面平行判定定理面面平行性质定理3、平行关系与垂直关系互推。
以线或面为元素,互推的本质是以某一元素为中介,通过另外两元素与中介元素的垂直或平行关系,推导出该两元素的关系,总共有21种情况,能得出结论的有以下9种情况。
线线平行传递性:;b c c a b a //////⇒⎭⎬⎫面面平行传递性:;γαβγβα//////⇒⎭⎬⎫线面垂直、线面垂直线面平行:;⇒ααββα//a a a ⇒⎪⎭⎪⎬⎫⊄⊥⊥线面垂直线线平行(线面垂直性质定理):;⇒b a b a //⇒⎭⎬⎫⊥⊥αα线面垂直面面平行:;⇒βαβα//⇒⎭⎬⎫⊥⊥a a 线面垂直、面面平行线面垂直:;⇒βαβα⊥⇒⎭⎬⎫⊥a a //线线平行、线面垂直线面垂直:;⇒αα⊥⇒⎭⎬⎫⊥b a b a //线面垂直、线面平行面面垂直:。
⇒βααβ⊥⇒⎭⎬⎫⊥a a //备注:另外证明平行关系时可以从最基本的定义交点入手,证明垂直关系时可以从最基本的定义角度入手。
符号化语言一览表①线面平行;;;ααα////a a b b a ⇒⎪⎭⎪⎬⎫⊄⊂αββα////a a ⇒⎭⎬⎫⊂ααββα//a a a ⇒⎪⎭⎪⎬⎫⊄⊥⊥②线线平行:;;;;////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭ b a b a //⇒⎭⎬⎫⊥⊥αα////a a b b αβαγβγ⎫⎪=⇒⎬⎪=⎭b c c a b a //////⇒⎭⎬⎫③面面平行:;;;,////,//a b a b O a b αααβββ⊂⊂⎫⎪=⇒⎬⎪⎭βαβα//⇒⎭⎬⎫⊥⊥a a γαβγβα//////⇒⎭⎬⎫④线线垂直:;b a b a ⊥⇒⎭⎬⎫⊂⊥αα⑤线面垂直:;;,,a b a b O l l a l b ααα⊂⊂⎫⎪=⇒⊥⎬⎪⊥⊥⎭,l a a a l αβαββα⊥⎫⎪=⇒⊥⎬⎪⊂⊥⎭ ;;βαβα⊥⇒⎭⎬⎫⊥a a //αα⊥⇒⎭⎬⎫⊥b a b a //⑥面面垂直:二面角900; ;;βααβ⊥⇒⎭⎬⎫⊥⊂a a βααβ⊥⇒⎭⎬⎫⊥a a //二、立体几何中的重要方法1、求角:(步骤-------Ⅰ找或作角;Ⅱ求角)⑴异面直线所成角的求法:①平移法:平移直线,构造三角形;②补形法:补成正方体、平行六面体、长方体等,发现两条异面直线间的关系.注:还可用向量法,转化为两直线方向向量的夹角.⑵直线与平面所成的角:①直接法(利用线面角定义);②先求斜线上的点到平面距离h ,与斜线段长度作比,得sin ;③三线三角公式.θ12cos cos cos θθθ=注:还可用向量法,转化为直线的方向向量与平面法向量的夹角.⑶二面角的求法:①定义法:在二面角的棱上取一点(特殊点),作出平面角,再求解;②垂面法:作面与二面角的棱垂直; ③投影法(三垂线定理);④面积摄影法.注:对于没有给出棱的二面角,应先作出棱,然后再选用上述方法;还可用向量法,转化为两个班平面法向量的夹角.2、求距离:(步骤-------Ⅰ找或作垂线段;Ⅱ求距离)⑴两异面直线间的距离:一般先作出公垂线段,再进行计算;或转化为线面距离、点面距离;⑵点到直线的距离:一般用三垂线定理作出垂线段,再求解;⑶点到平面的距离:①垂面法:借助面面垂直的性质作垂线段(确定已知面的垂面是关键),再求解;②等体积法;还可用向量法:.||n d =3、证明平行、垂直的理论途径:①证明直线与直线的平行的思考途径:(1)转化为判定共面二直线无交点(定义);(2)转化为两直线同与第三条直线平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行.②证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点(定义);(2)转化为线线平行;(3)转化为面面平行.③证明平面与平面平行的思考途径:(1)转化为判定两平面无公共点(定义);(2)转化为线面平行;(3)转化为线面垂直.④证明直线与直线的垂直的思考途径:(1)转化为相交垂直;(2)转化为线面垂直.⑤证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直(定义);(2)转化为该直线与平面内相交的两条直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;(5)转化为该直线与两个垂直平面交线垂直.⑥证明平面与平面的垂直的思考途径:(1)转化为判断二面角是直二面角;(2)转化为线面垂直.。
空间点、直线、平面之间的位置关系知识点1:平面的基本性质概念:平面内有无数个点,平面可以看成点的集合。
点A 在平面α内记作A α∈;点B 在平面α外记作B α∉。
点P 在直线l 上记作P l ∈,点P 在直线l 外记作P l ∉。
如果直线l 上的所有点都在平面α内,就说直线l 在α内,或平面α经过直线l ,记作l α⊂; 否则就说直线l 在平面α外,或平面α不经过直线l ,记作l α⊄。
⑴、公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有点都在这个平面内。
图形语言:符号语言; ,,,.A l B l A B l ααα∈∈∈∈⇒⊂ ⑵、 公理2:过不在一条直线的三点,有且只有一个平面。
图形语言:注:不在一条直线上的三个点,,A B C 所确定的平面,可记作“平面ABC ”. 推论:1)经过一条直线和直线外一点,可以确定一个平面。
2)经过两条相交直线,有且只有一个平面。
3)经过两条平行线,有且只有一个平面。
⑶、 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
图形语言表述:符号语言; ,,,,.A B C A B C αααα⇒∈∈∈三点不共线有且只有一个平面,使 符号语言表述:.P l P l αβαβ∈⋂⇒⋂=∈且知识点2:空间中直线与直线的位置关系异面直线:我们把不同在任何一个平面内的两条直线叫做异面直线。
(既不相交也不平行)⎧⎧⎪⎨⎨⎩⎪⎩相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点.公理4:平行于同一条直线的两条直线互相平行。
(空间平行线的传递性)等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
异面直线夹角的取值范围: (o o ⎤⎦0,90 . 如果两条异面直线所成的角是直角,则这两条直线互相垂直。
知识点3:空间中直线与平面之间的位置关系(1)、直线在平面内——有无数个公共点;(2)、直线与平面相交——有且只有一个公共点;(3)、直线与平面平行——没有公共点。
空间点、直线、平面之间的位置关系一、基础知识1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间中两直线的位置关系(1)空间中两直线的位置关系⎩⎪⎨⎪⎧ 共面直线⎩⎨⎧ 平行相交异面直线:不同在任何一个 平面内(2)异面直线所成的角 ①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝ ⎛⎦⎥⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.直线l和平面α相交、直线l和平面α平行统称为直线l在平面α外,记作l⊄α.(2)平面与平面的位置关系有平行、相交两种情况.二、常用结论1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.3.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.考点一平面的基本性质及应用B1C1D1中,E,F分[典例]如图所示,在正方体ABCD-A别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.[证明](1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈DA,∴CE,D1F,DA三线共点.[变透练清]1.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是()解析:选D A,B,C图中四点一定共面,D中四点不共面.2.(变结论)若本例中平面BB1D1D与A1C交于点M,求证:B,M,D1共线.证明:连接BD1(图略),因为BD1与A1C均为正方体ABCD-A1B1C1D1的对角线,故BD1与A1C相交,则令BD1与A1C的交点为O,则B,O,D1共线,因为BD1⊂平面BB1D1D,故A1C与平面BB1D1D的交点为O,与M重合,故B,M,D1共线.考点二空间两直线的位置关系[典例](1)(优质试题·郑州模拟)已知直线a和平面α,β,α∩β=l,a⊄α,a ⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是() A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面(2)G,N,M,H分别是下图中正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形的是________.(填序号)[解析](1)如图,取平面ABCD为α,平面ABFE为β.若直线CH为a,则a在α,β内的射影分别为CD,BE,此时CD,BE异面,即b,c异面,排除A;若直线GH为a,则a在α,β内的射影分别为CD,EF,此时CD,EF平行,即b,c平行,排除B;若直线BH为a,则a在α,β内的射影分别为BD,BE,此时BD,BE相交,即b,c 相交,排除C.综上所述选D.(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面.所以在图②④中,GH与MN异面.[答案](1)D(2)②④[题组训练]1.下列结论中正确的是()①在空间中,若两条直线不相交,则它们一定平行;②与同一直线都相交的三条平行线在同一平面内;③一条直线与两条平行直线中的一条相交,那么它也与另一条相交;④空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥c.A.①②③B.②④C.③④D.②③解析:选B①错,两条直线不相交,则它们可能平行,也可能异面;②显然正确;③错,若一条直线和两条平行直线中的一条相交,则它和另一条直线可能相交,也可能异面;④由平行直线的传递性可知正确.故选B.2.如图,在正方体ABCD -A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确结论的序号为________.解析:直线AM与CC1是异面直线,直线AM与BN也是异面直线,所以①②错误.点B,B1,N在平面BB1C1C中,点M在此平面外,所以BN,MB1是异面直线.同理AM,DD1也是异面直线.答案:③④[课时跟踪检测]1.(优质试题·衡阳模拟)若直线l与平面α相交,则()A.平面α内存在直线与l异面B.平面α内存在唯一一条直线与l平行C.平面α内存在唯一一条直线与l垂直D.平面α内的直线与l都相交解析:选A当直线l与平面α相交时,这条直线与该平面内任意一条不过交点的直线均为异面直线,故A正确;该平面内不存在与直线l平行的直线,故B错误;该平面内有无数条直线与直线l垂直,所以C错误,平面α内的直线与l可能异面,故D错误,故选A.2.在正方体ABCD-A1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直解析:选A由BC綊AD,AD綊A1D1,知BC綊A1D1,从而四边形A1BCD1是平行四边形,所以A1B∥CD1,又EF⊂平面A1BCD1,EF∩D1C=F,故A1B与EF相交.3.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:选B直线a,b分别在两个不同的平面α,β内,则由“直线a和直线b相交”可得“平面α和平面β相交”,反之不成立.所以“直线a和直线b 相交”是“平面α和平面β相交”的充分不必要条件.故选B.4.设四棱锥P-ABCD的底面不是平行四边形,用平面α去截此四棱锥(如图),使得截面四边形是平行四边形,则这样的平面α()A.不存在B.只有1个C.恰有4个D.有无数多个解析:选D设四棱锥的两组不相邻的侧面的交线为m,n,直线m,n确定了一个平面β.作与β平行的平面α,与四棱锥的各个侧面相交,则截得的四边形必为平行四边形,而这样的平面α有无数多个.5.在空间四边形ABCD各边AB,BC,CD,DA上分别取E,F,G,H四点,如果EF,GH相交于点P,那么()A.点P必在直线AC上B.点P必在直线BD上C.点P必在平面DBC内D.点P必在平面ABC外解析:选A如图,因为EF⊂平面ABC,而GH⊂平面ADC,且EF和GH 相交于点P,所以点P在两平面的交线上,因为AC是两平面的交线,所以点P 必在直线AC上.6.如图,在平行六面体ABCD-A1B1C1D1中,既与AB共面又与CC1共面的棱有________条.解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的有5条.答案:57.在四棱锥P-ABCD中,底面ABCD为平行四边形,E,F分别为侧棱PC,PB的中点,则EF与平面P AD的位置关系为________,平面AEF与平面ABCD 的交线是________.解析:由题易知EF ∥BC ,BC ∥AD ,所以EF ∥AD ,故EF ∥平面P AD ,因为EF ∥AD ,所以E ,F ,A ,D 四点共面,所以AD 为平面AEF 与平面ABCD 的交线. 答案:平行 AD8.如图所示,在空间四边形ABCD 中,点E ,H 分别是边AB ,AD 的中点,点F ,G 分别是边BC ,CD 上的点,且CF CB =CG CD =23,有以下四个结论.①EF 与GH 平行;②EF 与GH 异面;③EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上; ④EF 与GH 的交点M 一定在直线AC 上.其中正确结论的序号为________.解析:如图所示.连接EH ,FG ,依题意,可得EH ∥BD ,FG ∥BD ,故EH ∥FG ,所以E ,F ,G ,H 共面.因为EH =12BD ,FG =23BD ,故EH ≠FG ,所以EFGH 是梯形,EF 与GH 必相交,设交点为M .因为点M 在EF 上, 故点M 在平面ACB 上.同理,点M 在平面ACD 上,所以点M 是平面ACB 与平面ACD 的交点,又AC 是这两个平面的交线,所以点M 一定在直线AC 上.答案:④9.如图所示,正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是A 1B 1,B 1C 1的中点.(1)AM 和CN 是否共面?说明理由;。
点线面的位置关系知识点在几何学中,点、线和面是三个基本的几何概念,它们之间存在着一系列的位置关系。
这些位置关系的理解对于解决几何问题以及应用几何知识有着重要的意义。
本文将介绍点线面的位置关系的几个重要知识点。
一、点与直线的位置关系1. 在直线上:当一个点恰好位于一条直线上时,我们可以说这个点在直线上。
例如,点A在直线AB上。
2. 在直线的两侧:如果一个点既不在直线上,也不在直线的延长线上,我们可以说这个点在直线的两侧。
例如,点C在直线AB的两侧。
3. 在直线的延长线上:如果一个点不在直线上,但位于直线的延长线上,我们可以说这个点在直线的延长线上。
例如,点D在直线AB的延长线上。
4. 平行于直线:如果一条直线与给定直线没有任何交点,我们可以说这条直线平行于给定直线。
例如,直线CD平行于直线AB。
二、点与平面的位置关系1. 在平面上:当一个点位于一个平面内部时,我们可以说这个点在平面上。
例如,点A在平面P上。
2. 不在平面上:如果一个点既不在平面上,也不在平面的延长线上,我们可以说这个点不在平面上。
例如,点B不在平面P上。
3. 在平面的延长线上:如果一个点不在平面上,但位于平面的延长线上,我们可以说这个点在平面的延长线上。
例如,点C在平面P的延长线上。
4. 垂直于平面:如果一条直线与给定平面的任意一条线都垂直,我们可以说这条直线垂直于给定平面。
例如,直线EF垂直于平面P。
三、直线与平面的位置关系1. 相交于一点:当一条直线与平面有且仅有一个交点时,我们可以说这条直线与平面相交于一点。
例如,直线L与平面P相交于点A。
2. 平行于平面:如果一条直线与给定平面的任意一条线都平行,我们可以说这条直线平行于给定平面。
例如,直线M平行于平面P。
3. 包含于平面:当一条直线上的所有点都位于给定平面上时,我们可以说这条直线被包含于给定平面中。
例如,直线N被包含于平面P 中。
4. 相交于一条线:当一条直线与平面有无穷多个交点时,我们可以说这条直线与平面相交于一条线。
//a α//a b点线面位置关系总复习知识梳理一、直线与平面平行 1.判定方法(1)定义法:直线与平面无公共点。
(2)判定定理:(3)其他方法://a αββ⊂2.性质定理://a a bαβαβ⊂⋂=二、平面与平面平行 1.判定方法(1)定义法:两平面无公共点。
(2)判定定理:////a b a b a b Pββαα⊂⊂⋂= //αβ(3)其他方法:a a αβ⊥⊥ //αβ; ////a γβγ//αβ 2.性质定理://a bαβγαγβ⋂=⋂=三、直线与平面垂直(1)定义:如果一条直线与一个平面内的所有直线都垂直,则这条直线和这个平面垂直。
(2)判定方法 ① 用定义.//a b a b αα⊄⊂//a α//a b//a b ② 判定定理:a ba cb c A b c αα⊥⊥⋂=⊂⊂ a α⊥③ 推论://a a bα⊥ b α⊥ (3)性质 ①a b αα⊥⊂ a b ⊥ ②a b αα⊥⊥四、平面与平面垂直(1)定义:两个平面相交,如果它们所成的二面角是直线二面角,就说这两个平面互相垂直。
(2)判定定理a a αβ⊂⊥ αβ⊥ (3)性质①性质定理la a lαβαβα⊥⋂=⊂⊥ αβ⊥② l P P A A αβαβαβ⊥⋂=∈⊥垂足为 A l ∈④ l P PA αβαβαβ⊥⋂=∈⊥ PA α⊂“转化思想”面面平行 线面平行 线线平行 面面垂直 线面垂直 线线垂直●求二面角1.找出垂直于棱的平面与二面角的两个面相交的两条交线,它们所成的角就是二面角的平面角.2.在二面角的棱上任取一点O,在两半平面内分别作射线OA⊥l,OB⊥l,则∠AOB叫做二面角的平面角例1.如图,在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC,DE垂直平分SC,且分别交AC于D,交SC于E,又SA=AB,SB=BC,求以BD为棱,以BDE和BDC为面的二面角的度数。
●求线面夹角定义:斜线和它在平面内的射影的夹角叫做斜线和平面所成的角(或斜线和平面的夹角)方法:作直线上任意一点到面的垂线,与线面交点相连,利用直角三角形有关知识求得三角形其中一角就是该线与平面的夹角。
第二章点、直线、平面之间的地址关系空间点、直线、平面之间的地址关系一、平面1、平面及其表示2、平面的基本性质①公义 1:A lB llAB②公义 2:不共线的三点确定一个平面③公义 3:Pl 则P lP二、点与面、直线地址关系1、A1、点与平面有 2 种地址关系2、B1、A l2、点与直线有 2 种地址关系2、 B l三、空间中直线与直线之间的地址关系1、异面直线2、直线与直线的地址关系订交共面平行异面3、公义 4 和定理公义 4:l1 Pl3l1 Pl 2l 2 Pl3定理:空间中若是两个角的两边分别对应平行,那么这两个角相等或互补。
4、求异面直线所成角的步骤:① 作:作平行线获取订交直线;② 证:证明作出的角即为所求的异面直线所成的角;③ 构造三角形求出该角。
提示: 1、作平行线常有方法有:直接平移,中位线,平行四边形。
2、异面直线所的角的范围是00 ,900。
四、空间中直线与平面之间的地址关系地址关系直线 a在平面内直线 a与平面订交直线 a与平面平行公共点有无数个公共点有且只有一个公共点没有公共点符号表示a a I Aa P图形表示五、空间中平面与平面之间的地址关系地址关系两个平面平行两个平面订交公共点没有公共点有一条公共直线符号表示P I a图形表示直线、平面平行的判断及其性质一、线面平行1、判断:ba b Pb Pa(线线平行,则线面平行)2、性质:a PaPa b b(线面平行,则线线平行)二、面面平行1、判断:aba b P Pa Pb P(线面平行,则面面平行)2、性质 1:PI a a PbI b(面面平行,则线面平行)性质 2:Pm Pm(面面平行,则线面平行)说明( 1)判断直线与平面平行的方法:① 利用定义:证明直线与平面无公共点。
② 利用判判定理:从直线与直线平行等到直线与平面平行。
③ 利用面面平行的性质:两个平面平行,则其中一个平面内的直线必平行于另一个平面。
(2)证明面面平行的常用方法①利用面面平行的定义:此法一般与反证法结合。
点、直线、平面之间的位置关系知识点总结立体几何知识点总结
1.直线在平面内的判定
1利用公理1:一直线上不重合的两点在平面内;则这条直线在平面内.
2若两个平面互相垂直;则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内;即若α⊥β;A∈α;AB⊥β;则ABα.
3过一点和一条已知直线垂直的所有直线;都在过此点而垂直于已知直线的平面内;即若A∈a;a⊥b;A∈α;b⊥α;则aα.
4过平面外一点和该平面平行的直线;都在过此点而与该平面平行的平面内;即若Pα;P∈β;β∥α;P∈a;a∥α;则aβ.
5如果一条直线与一个平面平行;那么过这个平面内一点与这条直线平行的直线必在这个平面内;即若a∥α;A∈α;A∈b;b∥a;则bα.
2.存在性和唯一性定理
1过直线外一点与这条直线平行的直线有且只有一条;
2过一点与已知平面垂直的直线有且只有一条;
3过平面外一点与这个平面平行的平面有且只有一个;
4与两条异面直线都垂直相交的直线有且只有一条;
5过一点与已知直线垂直的平面有且只有一个;
6过平面的一条斜线且与该平面垂直的平面有且只有一个;
7过两条异面直线中的一条而与另一条平行的平面有且只有一个;
8过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.
3.射影及有关性质
1点在平面上的射影自一点向平面引垂线;垂足叫做这点在这个平面上的射影;点的射影还是点.
2直线在平面上的射影自直线上的两个点向平面引垂线;过两垂足的直线叫做直线在这平面上的射影.
和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线.
3图形在平面上的射影一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.
当图形所在平面与射影面垂直时;射影是一条线段;
当图形所在平面不与射影面垂直时;射影仍是一个图形.
4射影的有关性质
从平面外一点向这个平面所引的垂线段和斜线段中:
i射影相等的两条斜线段相等;射影较长的斜线段也较长;
ii相等的斜线段的射影相等;较长的斜线段的射影也较长;
iii垂线段比任何一条斜线段都短.
4.空间中的各种角
等角定理及其推论
定理若一个角的两边和另一个角的两边分别平行;并且方向相同;则这两个角相等.
推论若两条相交直线和另两条相交直线分别平行;则这两组直线所成的锐角或直角相等.
异面直线所成的角
1定义:a、b是两条异面直线;经过空间任意一点O;分别引直线a′∥a;b′∥b;则a′和b′所成的锐角或直角叫做异面直线a和b所成的角.
2取值范围:0°<θ≤90°.
3求解方法
①根据定义;通过平移;找到异面直线所成的角θ;
②解含有θ的三角形;求出角θ的大小.
5.直线和平面所成的角
1定义和平面所成的角有三种:
i垂线面所成的角的一条斜线和它在平面上的射影所成的锐角;叫做这条直线和这个平面所成的角.
ii垂线与平面所成的角直线垂直于平面;则它们所成的角是直角.
iii一条直线和平面平行;或在平面内;则它们所成的角是0°的角.
2取值范围0°≤θ≤90°
3求解方法
①作出斜线在平面上的射影;找到斜线与平面所成的角θ.
②解含θ的三角形;求出其大小.
③最小角定理
斜线和平面所成的角;是这条斜线和平面内经过斜足的直线所成的一切角中最小的角;亦可说;斜线和平面所成的角不大于斜线与平面内任何直线所成的角.
6.二面角及二面角的平面角
1半平面直线把平面分成两个部分;每一部分都叫做半平面.
2二面角条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱;这两个平面叫做二面角的面;即二面角由半平面一棱一
半平面组成.
若两个平面相交;则以两个平面的交线为棱形成四个二面角.
二面角的大小用它的平面角来度量;通常认为二面角的平面角θ的取值范围是
0°<θ≤180°
3二面角的平面角
①以二面角棱上任意一点为端点;分别在两个面内作垂直于棱的射线;这
两条射线所组成的角叫做二面角的平面角.
如图;∠PCD是二面角α-AB-β的平面角.平面角∠PCD的大小与顶点C在棱AB上的位置无关.
②二面角的平面角具有下列性质:
i二面角的棱垂直于它的平面角所在的平面;即AB⊥平面PCD.
ii从二面角的平面角的一边上任意一点异于角的顶点作另一面的垂线;垂足必在平面角的另一边或其反向延长线上.
iii二面角的平面角所在的平面与二面角的两个面都垂直;即平面PCD⊥α;平面PCD⊥β.
③找或作二面角的平面角的主要方法.
i定义法
ii垂面法
iii三垂线法
Ⅳ根据特殊图形的性质
4求二面角大小的常见方法
①先找或作出二面角的平面角θ;再通过解三角形求得θ的值.
②利用面积射影定理
S′=S·cosα
其中S为二面角一个面内平面图形的面积;S′是这个平面图形在另一个面上的射影图形的面积;α为二面角的大小.
③利用异面直线上两点间的距离公式求二面角的大小.
7.空间的各种距离
点到平面的距离
1定义面外一点引一个平面的垂线;这个点和垂足间的距离叫做这个点到这个平面的距离.
2求点面距离常用的方法:
1直接利用定义求
①找到或作出表示距离的线段;
②抓住线段所求距离所在三角形解之.
2利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上;则已知点到两平面交线的距离就是所求的点面距离.
3体积法其步骤是:①在平面内选取适当三点;和已知点构成三棱锥;②求出此三棱锥的体积V和所取三点构成三角形的面积S;③由V=S·h;求出h
即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.
4转化法将点到平面的距离转化为平行直线与平面的距离来求.
8.直线和平面的距离
1定义一条直线和一个平面平行;这条直线上任意一点到平面的距离;叫做这条直线和平面的距离.
2求线面距离常用的方法
①直接利用定义求证或连或作某线段为距离;然后通过解三角形计算之.
②将线面距离转化为点面距离;然后运用解三角形或体积法求解之.
③作辅助垂直平面;把求线面距离转化为求点线距离.
9.平行平面的距离
1定义个平行平面同时垂直的直线;叫做这两个平行平面的公垂线.公垂线夹在两个平行平面间的部分;叫做这两个平行平面的公垂线段.两个平行平面的公垂线段的长度叫做这两个平行平面的距离.
2求平行平面距离常用的方法
①直接利用定义求
证或连或作某线段为距离;然后通过解三角形计算之.
②把面面平行距离转化为线面平行距离;再转化为线线平行距离;最后转化为点线面距离;通过解三角形或体积法求解之.
10.异面直线的距离
1定义条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段的长度;叫做两条异面直线的距离.
任何两条确定的异面直线都存在唯一的公垂线段.
2求两条异面直线的距离常用的方法
①定义法题目所给的条件;找出或作出两条异面直线的公垂线段;再根据有关定理、性质求出公垂线段的长.
此法一般多用于两异面直线互相垂直的情形.
②转化法为以下两种形式:线面距离面面距离
③等体积法④最值法⑤射影法⑥公式法。