斜线在平面上的射影
- 格式:ppt
- 大小:115.00 KB
- 文档页数:10
三垂线定理,平面内的一条直线,如果与穿过这个平面的一条斜线在这个平面上的射影垂直,那么它也和这条斜线垂直。
线面垂直证明
已知:如图,PO在上的射影OA垂直于a。
求证:OPa
证明:过P做PA垂直于
∵PA且a
aPA
又aOA
OAPA=A
a平面POA
aOP
用向量证明
1.已知:PO,PA分别是平面的垂线,斜线,OA是PA在内的射影,向量b包含于,且向量b垂直于OA,求证:向量b垂直于PA
证明:∵PO垂直于,PO垂直于b,又∵OA垂直b,向量PA=(向量PO+向量OA)
向量PA向量b=(向量PO+向量OA)向量b=(向量PO向量b)+(向量OA向量b )=0,PA 向量b。
2.已知三个平面OAB,OBC,OAC相交于一点O,AOB=BOC=COA=60度,求交线OA与平面OBC所成的角。
解:∵向量OA=(向量OB+向量AB),O是内心,又∵AB=BC=CA,OA与平面OBC所成的角是30。
三余弦定理
三余弦定理:平面内的一条直线与该平面的一条斜线所成角的余弦值,等于斜线与平面所成角的余弦值乘以斜线在平面上的射影与该直线所成角的余弦值。
例如:OP是平面OAB的一条斜线,且OP在面上的射影是OC。
若POC=(斜线与平面
所成角),AB与OC所成角为(射影与直线所成角),OP与AB所成角为(直线与斜线所成角),则cos=coscos
显然,三垂线定理就是当=90的情况。
直线垂直射影有cos=0,因此cos=0,即直线与斜线也垂直。
【考点梳理】一、考试内容1.平面。
平面的基本性质。
平面图形直观图的画法。
2.两条直线的位置关系。
平行于同一条直线的两条直线互相平行。
对应边分别平行的角。
异面直线所成的角。
两条异面直线互相垂直的概念。
异面直线的公垂线及距离。
3.直线和平面的位置关系。
直线和平面平行的判定与性质。
直线和平面垂直的判定与性质。
点到平面的距离。
斜线在平面上的射影。
直线和平面所成的角。
三垂线定理及其逆定理。
4.两个平面的位置关系。
平面平行的判定与性质。
平行平面间的距离。
二面角及其平面角。
两个平面垂直的判定与性质。
二、考试要求1.掌握平面的基本性质,空间两条直线、直线与平面、平面与平面的位置关系(特别是平行和垂直关系)以及它们所成的角与距离的概念。
对于异面直线的距离,只要求会计算已给出公垂线时的距离。
2.能运用上述概念以及有关两条直线、直线和平面、两个平面的平行和垂直关系的性质与判定,进行论证和解决有关问题。
对于异面直线上两点的距离公式不要求记忆。
3.会用斜二测画法画水平放置的平面图形(特别是正三角形、正四边形、正五边形、正六边形)的直观图。
能够画出空间两条直线、两个平面、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。
4.理解用反证法证明命题的思路,会用反证法证明一些简单的问题。
三、考点简析1.空间元素的位置关系2.平行、垂直位置关系的转化3.空间元素间的数量关系(1)角①相交直线所成的角;②异面直线所成的角——转化为相交直线所成的角;③直线与平面所成的角——斜线与斜线在平面内射影所成的角;④二面角——用二面角的平面角来度量。
(2)距离①两点之间的距离——连接两点的线段长;②点线距离——点到垂足的距离;③点面距离——点到垂足的距离;④平行线间的距离——平行线上一点到另一直线的距离;⑤异面直线间的距离——公垂线在两条异面直线间的线段长;⑥线面距离——平行线上一点到平面的距离;⑦面面距离——平面上一点到另一平面的距离;⑧球面上两点距离——球面上经过两点的大圆中的劣弧的长度。
线线角和线面角[重点]:确定点、斜线在平面内的射影。
[知识要点]:一、线线角1、定义:设a、b是异面直线,过空间一点O引a′//a,b′//b,则a′、b′所成的锐角(或直角),叫做异面直线a、b所成的角.2、范围:(0,]3. 向量知识:对异面直线AB和CD(1);(2) 向量和的夹角<,>(或者说其补角)等于异面直线AB和CD的夹角;(3)二、线面角1、定义:平面的一条斜线和它在这个平面内的射影所成的锐角,斜线和平面所成角的范围是(0,).2、直线在平面内或直线与平面平行,它们所成角是零角;直线垂直平面它们所成角为,3、范围: [0,]。
4、射影定理:斜线长定理:从平面外一点向这个平面所引的垂线段和斜线段中:(1)射影相等的两条斜线段相等,射影较长的斜线段也较长;(2)相等的斜线段的射影相等,较长的斜线段的射影也较长;(3)垂线段比任何一条斜线段都短。
5、最小角定理:平面的一条斜线与平面所成的角,是这条直线和平面内过斜足的直线所成的一切角中最小的角。
6、向量知识(法向量法)与平面的斜线共线的向量和这个平面的一个法向量的夹角<,>(或者说其补角)是这条斜线与该平面夹角的余角.[例题分析与解答]例1.如图所示,在棱长为a的正方体ABCD-A1B1C1D1中,求:异面直线BA1与AC所成的角.分析:利用,求出向量的夹角,再根据异面直线BA1,AC所成角的范围确定异面直线所成角.解:∵,,∴∵AB⊥BC,BB1⊥AB,BB1⊥BC,∴∴又∴∴所以异面直线BA1与AC所成的角为60°.点评:求异面直线所成角的关键是求异面直线上两向量的数量积,而要求两向量的数量积,必须会把所求向量用空间的一组基向量来表示.例2.如图(1),ABCD是一直角梯形,AD⊥AB,AD//BC,AB=BC=a, AD=2a,且PA⊥平面ABCD,PD与平面ABCD成30°角.(1)若AE⊥PD,E为垂足,求证:BE⊥PD;(2)求异面直线AE与CD所成角的大小(用反三角函数表示)解法一:(1)证明:∵PA⊥平面ABCD,∴PA⊥AB,∵AD⊥AB,∴AB⊥平面PAD,∴AB⊥PD,又AE⊥PD,∴PD⊥平面ABE,∴BE⊥PD.(2)解:设G、H分别为ED、AD的中点,连BH、HG、GB(图(1))易知,∴BH//CD.∵G、H分别为ED、AD的中点,∴HG//AE则∠BHG或它的补角就是异面直线AE、CD所成的角,而,,,在ΔBHG中,由余弦定理,得,∴.∴异面直线AE、CD所成角的大小为.解法二:如图(2)所示建立空间直角坐标系A-xyz,则,,,,,(1)证明:∵∴∴∴(2)解:∵∴∴异面直线AE、CD所成角的大小为例3.如图,在正方体ABCD-A1B1C1D1中,,求BE1与DF1所成角的余弦值.解:以D为坐标原点,为x,y,z轴,建立空间直角坐标系D-xyz,设正方体的棱长为4,则D(0,0,0),B(4,4,0),E1(4,3,4), F1(0,1,4).则,∴,∵.∴∴BE1与DF1所成角的余弦值为点评:在计算和证明立体几何问题中,若能在原图中建立适当的空间直角坐标系,把图形中的点的坐标求出来,那么图形有关问题可用向量表示.利用空间向量的坐标运算来求解,这样可以避开较为复杂的空间想象。
斜线与平面 三垂线定理一、知识要点:1、斜线在平面内的射影 ①点在平面的射影,垂线段:②平面的斜线,斜足,斜线段的定义③斜线在平面内的射影,斜线段在平面的射影。
2、射影定理从平面外一点向这个平面所引的垂线段和斜线段中:①射影相等的两条斜线段相等,射影较长的斜线段也较长; ②相等的斜线段的射影也相等,较长的斜线段的射影也较长; ③垂线段比任何一条斜线段都短。
3、直线和平面所成的角,范围为⎥⎦⎤⎢⎣⎡∈2,0πθ①斜线和平面所成的角:平面的斜线和它在这个平面内的射影所处的锐角。
范围为:⎪⎭⎫ ⎝⎛∈2,0πα②若直线和平面垂直,则线面所成的角为直角。
③若直线和平面平行或在平面内,则线面所成的角为︒0的角。
4、①斜线和平面所成的角,是这条斜线和这个平面内经过斜足的直线所成的一切角中的最小角。
②斜线和平面所成的角,是这条斜线和这个平面内的直线所成的一切角中的最小角。
5、三垂线定理 在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
已知:,PO PA 分别是平面α的垂线和斜线,OA 是PA 在平面α内的射影,a α⊂,且a OA ⊥ 求证:a PA ⊥; 说明:定理的实质是判定平面内的一条直线和平面的一条斜线的垂直关系。
6、三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直注意:⑴三垂线指PA ,PO ,AO 都垂直α内的直线a 其实质是:斜线和平面内一条直线垂直的判定和性质定理 ⑵要考虑a 的位置,并注意两定理交替使用7、①如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上②如果经过一个角的顶点引这个角所在平面的斜线,如果斜线的这个角两边夹角相等,那么斜线在平面上的射影是这个角的平分线所在直线二、高考题集1、(2006年全国卷II )如图,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α、β所成的角分别为π4和π6,过A 、B 分别作两平 面交线的垂线,垂足为A ′、B ′,则AB ∶A ′B ′= ( ) (A )2∶1 (B )3∶1 (C )3∶2 (D )4∶32、(2006年四川卷)在三棱锥0ABC -中,三条棱,,OA OB OC 两两互相垂直,且,OA OB OC M ==是AB 边的中点,则OM 与平面ABC 所成角的大小是_______(用反三角函数表示)αβA BA ′B ′3、(2006年重庆理)对于任意直线l 与平面α,在平面α内必有直线m ,使m 与l ( ).(A )平行 (B )相交 (C )垂直 (D )互为异面直线 4、(07湖北•理•4题)平面α外有两条直线m 和n ,如果m 和n 在平面α内的射影分别是1m 和1n ,给出下列四个命题:①1m ⊥1n ⇒m ⊥n ; ②m ⊥n ⇒1m ⊥1n ;③1m 与1n 相交⇒m 与n 相交或重合; ④1m 与1n 平行⇒m 与n 平行或重合;其中不正确的命题个数是( )A.1 B.2 C.3 D.45、(08四川卷9)设直线l ⊂平面α,过平面α外一点A 与,l α都成030角的直线有且只有:( )(A)1条 (B)2条 (C)3条 (D)4条 6、已知异面直线a 与b 所成的角为500,P 为空间一点,则过点P 与a 、b 所成的角都是300的直线有且仅有( )()A 1条 ()B 2条 ()C 3条 ()D 4条7、如图5,正方体1111ABCD A B C D -中,点11M AB N BC ∈∈,,且AM BN =,有以下四个结论:①1AA MN ⊥;②11A C MN ∥;③MN 与面1111A B C D 成0角;④MN 与11A C是异面直线.其中正确结论的序号是 。