15.1.1_从分数到分式 王冲
- 格式:ppt
- 大小:1.48 MB
- 文档页数:31
八年级数学上册 15.1 分式 15.1.1 从分数到分式教学设计(新版)新人教版一. 教材分析《八年级数学上册》第15.1节主要介绍分式的概念。
通过这一节的学习,学生能够理解分数与分式的联系,掌握分式的基本性质,并能够进行简单的分式运算。
本节内容是整个分式部分的基础,对于学生来说具有重要的意义。
二. 学情分析八年级的学生已经掌握了分数的基本知识,对于分数的加减乘除等运算也有一定的了解。
但是,学生对于分数与分式的区别和联系可能还不是很清楚,对于分式的运算也可能会感到困惑。
因此,在教学过程中,需要引导学生理解分数与分式的关系,并通过具体的例子让学生掌握分式的运算方法。
三. 教学目标1.知识与技能:学生能够理解分数与分式的联系,掌握分式的基本性质,并能够进行简单的分式运算。
2.过程与方法:学生通过观察、思考、操作等活动,培养自己的观察能力、思维能力和动手能力。
3.情感态度与价值观:学生能够积极参与课堂活动,对数学产生兴趣,培养自己的抽象思维能力。
四. 教学重难点1.重点:分数与分式的联系,分式的基本性质,分式的运算方法。
2.难点:分式的运算规律,分式方程的解法。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题引导学生思考,通过具体的案例让学生理解分式的概念和运算方法,通过小组合作让学生互相交流和探讨,提高学生的学习效果。
六. 教学准备1.教学课件:制作精美的教学课件,帮助学生直观地理解分式的概念和运算方法。
2.教学案例:准备一些具体的案例,让学生通过观察和操作来理解分式的运算方法。
3.练习题:准备一些练习题,让学生在课堂上进行练习,巩固所学知识。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾分数的基本知识,如分数的定义、分数的加减乘除等。
然后引导学生思考分数与分式的关系,引出分式的概念。
2.呈现(15分钟)利用教学课件呈现分式的定义和基本性质,让学生直观地理解分式的概念。
15.1.1从分数到分式
授课人:
评课人:
《从分数到分式》的评课稿
聆听了老师的课。
下面就王老师的《分数到分式》这一课谈谈自己的看法。
本节课学习目标符合学情,最终目标达成度高,组织教学手段形式多样,学生小组合作交流、跟踪练习、思维导图的引入,限时让学生充分记忆定义和概念。
王老师以一首诗引入,激发了学生兴趣,通过课前自学部分接触引出分数、以分数为系数的单项式、分式。
类比分数(以0为分子,为分母)的概念定义分式,引导学生从分子和分母两部分观察,探究出分子和分母的特征,渗透类比思想。
及时跟踪练习让学生及时巩固概念,将代数式分成整式分式两类,暴露学生的易错点,不落下π与字母的区别,解决学生的易错题型。
紧接着,类比分数有无意义的情况探究分式有无意义的条件,跟踪训练及时巩固所学知识。
在探究分式的值为0时,分别对分子分母分解因式后,一方面让分子等于零,另一方面让分母不等于零,重点强调“且”字。
以思维导图的形式对本节课进行总结,增加学生总结知识的形式,延长记忆时长。
选取较简单,较典型的题目进行当堂检测,既能解决练习的需求,又能满足训练的强度。
最后以一首诗结尾本,首尾呼应。
遗憾的是,什么是有理式没有讲透,零值这个问题还未讲通。
习题处理略显仓促,只口述没有板书过程,老师没有示范,学生就无法下手。
新课的板书应强调重点,突出大括号的使用。
三部分的练习环节未及时点评学生的讲解,告诉学生讲题应该讲什么,讲透这道题的思路,站位和姿态。
合作探究部分应放手给小组,自己研究,发现问题,教师帮助学生解决困难。
小结部分给学生时间在导学案上手绘思维导图。
新课讲授1.问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x千米/时.轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060.2.以上的式子v+20100,v-2060,as,sv,有什么共同点?它们与分数有什么相同点和不同点?3.例1. 当x为何值时,分式有意义.例2. 当m为何值时,分式的值为0?(1)(2)(3)4、随堂练习1.判断下列各式哪些是整式,哪些是分式?9x+4,x7 ,209y+,54-m,238yy-,91-x2. 当x取何值时,下列分式有意义?(1)(2)(3)3. 当x为何值时,分式的值为0?(1)(2) (3)学生观察得出结论:什么是分式这些式子都像分数一样都是(即A÷B)的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.学生独立完成,师生共同纠正引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式BA才有意义.作业安排当a=1,2时,求分式aa21+的值当a取何值时,分式aa21+有意义1-mm32+-mm112+-mm23+xxx57+xx3217-xxx--221。
《15.1.1 从分数到分式》教学设计15.1.1 从分数到分式一、教学目标1、以描述实际问题中的数量关系为背景抽象出分式的概念,建立数学模型,并理解分式的概念.2、能够通过分式的定义理解和掌握分式有意义的条件.二、教学重难点1、教学重点理解分式有意义的条件及分式的值为零的条件.2、教学难点能熟练地求出分式有意义的条件及分式的值为零的条件.三、教学设计(一)复习引入1.什么是整式?什么是单项式?什么是多项式?2.判断下列各式中,哪些是整式?哪些不是整式?①;②1+x+y2;③;④;⑤;⑥;⑦.(二)探究新知1.分式的定义(1)学生看教材的问题:一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行90千米所用时间,与以最大航速逆流航行60千米所用的时间相等,江水的流速为多少?分析:设江水的流速为v千米/时.轮船顺流航行90千米所用的时间为小时,逆流航行60千米所用时间为小时,所以=.(2)学生完成教材第127页“思考”中的题.观察:以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是(即A÷B)的形式.分数的分子A与分母B都是整数,而这些式子中的A,B都是整式,并且B 中都含有字母.归纳:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式.巩固练习:教材第129页练习第2题.2.自学教材第128页思考:要使分式有意义,分式中的分母应满足什么条件?分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式才有意义.学生自学例1.例1 下列分式中的字母满足什么条件时分式有意义?(1);(2);(3);(4).解:(1)要使分式有意义,则分母3x≠0,即x≠0;(2)要使分式有意义,则分母x-1≠0,即x≠1;(3)要使分式有意义,则分母5-3b≠0,即b≠;(4)要使分式有意义,则分母x-y≠0,即x≠y.思考:如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?巩固练习:教材第129页练习第3题.3.补充例题:当m为何值时,分式的值为0?(1);(2);(3).思考:当分式为0时,分式的分子、分母各满足什么条件?分析:分式的值为0时,必须同时满足两个条件:(1)分母不能为零;(2)分子为零.答案:(1)m=0;(2)m=2;(3)m=1.(三)归纳总结1.分式的概念.2.分式的分母不为0时,分式有意义;分式的分母为0时,分式无意义.3.分式的值为零的条件:(1)分母不能为零;(2)分子为零.(四)布置作业教材第133页习题15.1第2,3题.四、教学反思在引入分式这个概念之前先复习分数的概念,通过类比来自主探究分式的概念,分式有意义的条件,分式值为零的条件,从而更好更快地掌握这些知识点,同时也培养学生利用类比转化的数学思想方法解决问题的能力.。
2023-2024人教版八年级数学上册教学设计15.1.1从分数到分式一、教材分析本节课选择的是人教版八年级上册第十五章第一课时,分式的概念与整式是紧密相联的,是前面知识的延伸,同时也是对前面知识的进一步运用和巩固。
学生掌握了分式的意义后,为进一步学习分式、函数以及方程等知识做好铺垫。
本节课的主要内容是分式的概念,分式有意义、无意义、值为零的条件,以分数为基础,类比引出分式的概念。
教学时应注意培养学生的观察、类比归纳能力,并让学生了解从具体到抽象、从特殊到一般的认知规律。
二、学情分析学生在之前已经学习了分数的相关知识,了解到分数的分子、分母都是具体的数,为本节课的学习做好了铺垫。
但是在本章节分式的学习中,分数的分母和分子不再是具体的数,而是抽象的含有字母的整式,会随着字母取值的变化而变化,这就要求学生打破思维定势去认识、理解本节内容。
由于八年级的学生具有一定的独立思考,概括归纳的能力,也有很强的合作意识,因此在教学过程中设计了一些数学活动,让学生真正参与到学习中去,激发他们的学习兴趣,帮助学生更好的理解所学内容。
三、教学目标(一)核心素养目标1.主要核心素养(1)从数量与数量关系中利用观察和归纳总结抽象出数学概念之间的关系,发展抽象能力;(2)在分式有意义的条件下,会求分式的分母中所含字母的取值条件,发展运算能力;2.次要核心素养(1)利用教材和具体情境进行自主探究过程中,培养学生良好的数学思维习惯,发展应用意识;(2)从命题出发推理分式有意义的条件,发展逻辑推理能力;(二)四基目标1.知识与技能目标(1)了解分式的概念,明确整式和分式之间的区别,能用分式表示现实情境中的数量关系;(2)能求分式的值,会求分式有意义、无意义以及值为0的条件范围;2.数学思想目标(1)理解分式的分子和分母有意义的条件中,感受用符号来代替具体的数,发展代数思想;(2)在具体的情境中,通过比较和交流认识分式,感受类比的思想;(3)在研究分式有意义的过程中,通过对字母符号进行讨论,体会分类讨论的数学思想;3.基本活动经验目标在合作探究中积累处理用分式表示生活实际问题的经验。
15.1分式15.1.1从分数到分式一、 教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,能熟练地求出分式有意义的条件.二、重点、难点1.重点:理解分式有意义的条件.2.难点:能熟练地求出分式有意义的条件.三、课堂引入1.让学生填写P127[思考],学生自己依次填出:710,a s ,33200,s v . 2.学生看问题:一艘轮船在静水中的最大航速为30 km/h ,它沿江以最大航速顺流航行90 km 所用时间,与以最大航速逆流航行60 km 所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程.设江水的流速为v km/h.轮船顺流航行90 km 所用的时间为9030v+小时,逆流航行60 km 所用时间6030v-小时,所以9030v +=6030v -. 3. 以上的式子9030v+,6030v -,a s ,s v ,有什么共同点?它们与分数有什么相同点和不同点?四、例题讲解P128例1. 当下列分式中的字母为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母的取值范围.[补充提问]如果题目为:当字母为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0?(1) (2) (3)[分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1五、随堂练习1.判断下列各式哪些是整式,哪些是分式?9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义? (1) (2) (3)3. 当x 为何值时,分式的值为0?(1) (2) (3) 六、课后练习1.下列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.(3)x 与y 的差于4的商是 .2.当x 取何值时,分式 无意义?3. 当x 为何值时,分式 的值为0?七、答案: 五、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x 1-m m 32+-m m 112+-m m 4522--x x x x 235-+23+x x x 57+xx 3217-x x x --221xx x --212312-+x x2.(1)x≠-2 (2)x≠ (3)x≠±2 3.(1)x=-7 (2)x=0 (3)x=-1六、1.18x, ,a+b, ba s +,4y x -; 整式:8x, a+b, 4y x -; 分式:x 80, ba s + 2.x =3.x=-1课后反思: x 802332。