任意角的三角函数导学案幻灯片
- 格式:ppt
- 大小:40.50 KB
- 文档页数:12
1.2.1任意角的三角函数<第一课时>学习目标1.通过借助单位圆理解并掌握任意角的三角函数定义,理解三角函数是以实数为自变量的函数,并从任意角的三角函数定义理解正弦、余弦、正切函数的定义域。
2.能初步应用定义分析和解决与三角函数值相关的一些简单问题重点难点教学重点:任意角的正弦、余弦、正切的定义。
教学难点:用角的终边上的点的坐标来刻画三角函数及三角函数符号教学过程(一)提出问题问题1:在初中时我们学了锐角三角函数,你能回忆一下锐角三角函数的定义吗问题2:你能用直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗如图,设锐角a的顶点与原点0重合,始边与X轴的非负半轴重合,那么它的终边在第一象限•在a 的终边上任取一点P(a,b),它与原点的距离r= a2 b2>0.过P作x轴的垂线,垂足为M,则线段0M的长度为a线段MP的长度为b. 根据初中学过的三角函数定义,我们有MP b OM a MP bsin a= =—,cos a= =—,tan a= =—OP r OP r OP a问题3:如果改变终边上的点的位置,这三个比值会改变吗?为什么?问题4:你利用已学知识能否通过取适当点而将上述三角函数的表达式简化(二)新课导学1、单位圆的概念:.在直角坐标系中,我们称以__________ 为圆心,以 ___________ 为半径的圆为单位圆2、三角函数的概念我们能够利用单位圆定义任意角的三角函数.如图2所示,设a是一个任意角,它的终边与单位圆交于点P(x,y),那么:(1)y叫做a的正弦,记作sin即sin a =y;(2)X叫做a的余弦,记作cos a即cos a =X;(3)—叫做a的正切,记作tan o即卩tan a= (x工0).X X所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数注意:(1)正弦、余弦、正切、都是以角为自变量 ,以比值为函数值的函数•(2)由相似三角形的知识,对于确定的角 a 这三个比值不会随点 P 在a 的终边上的 位置的改变而改变•3、例1 求 5的正弦、余弦和正切值•思考:若把角5、探究三角函数值在各象限的符号三角函数 定义域sincostan探究三角函数的定义域 4、 练习1:已知角B 的终边经过点 P( 12,5),求角B 正弦、余弦和正切值。
课题任意角的三角函数(第1课时)学习目标:1. 掌握任意角的正弦、余弦、正切的定义;2. 理解任意角的三角函数不同的定义方法;3. 已知角α终边上一点,会求角α的各三角函数值. 学习重点:任意角的正弦、余弦、正切的定义. 学习难点:任意角的三角函数不同的定义方法. 导学流程:一.了解感知锐角的三角函数如何定义?如图,设锐角α的顶点与原点O 重合,始边与x 轴的正半轴重合,那么它的终边在第一象限.在α的终边上任取一点(,)P a b ,它与原点的距离220r a b =+>. 过P 作x 轴的垂线,垂足为M ,则线段OM 的长度为a ,线段MP 的长度为b .则sin MP b OP r α==;cos α= = ; tan MP OMα== . 二.深入学习1.任意角的三角函数的定义问题1:将点取在使线段OP 的长1r =的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数为:sin MP OP α== ;cos OM OP α== ; tan MPOMα== .问题2:上述锐角α的三角函数值可以用终边上一点的坐标表示. 那么,角的概念推广以后,我们应该如何推广到任意角呢?如图,设α是一个任意角,它的终边与单位圆交于点(,)P x y , 那么:(1) 叫做α的正弦(sine),记做sin α; (2) 叫做α的余弦(cossine),记做cos α; (3)_______叫做α的正切(tangent),记做tan α.即:sin y α=,cos x α=,tan (0)yx xα=≠.反思:①当()2k k Z παπ=+∈时,α的终边在 轴上,终边上任意一点的横坐标x 都等于 ,所以无意义.② 如果知道角终边上一点,而这个点不是终边与单位圆的交点,该如何求它的三角函数值呢?2.探究三种三角函数的值在各象限的符号3.典例解析: 例1.求35π角的正弦、余弦和正切值.例2.已知角α的终边经过点P(-3,-4),求sin α、cos α、tan α的值。