概率论与数理统计1.3节条件概率
- 格式:ppt
- 大小:405.00 KB
- 文档页数:24
第三节 条件概率与全概率公式先由一个简单的例子引入条件概率的概念.内容分布图示★ 概念引入★ 条件概率的定义 ★ 例1 ★ 例2★ 乘法公式★ 例3 ★ 例4 ★ 例5 ★ 例6★ 全概率公式 ★ 例7 ★ 例8 ★ 例9★ 贝叶斯公式 ★ 例10 ★ 例11 ★ 例12★ 例13 ★ 例14★ 内容小结 ★ 课堂练习★ 习题1-4内容要点:一、 条件概率的概念在解决许多概率问题时,往往需要在有某些附加信息(条件)下求事件的概率. 如在事件A 发生的条件下,求事件B 发生的条件概率,记作)|(A B P .定义1 设B A ,是两个事件, 且0)(>A P , 则称)()()|(A P AB P A B P = (1) 为在事件A 发生的条件下,事件B 的条件概率.相应地,把)(B P 称为无条件概率。
一般地,)|(A B P )(B P ≠.注: 1. 用维恩图表达(1)式.若事件A 已发生,则为使B 也发生,试验结果必须是既在A 中又在B 中的样本点,即此点必属于AB .因已知A 已发生,故A 成为计算条件概率)|(A B P 新的样本空间.2. 计算条件概率有两种方法:a) 在缩减的样本空间A 中求事件B 的概率,就得到)|(A B P ;b) 在样本空间S 中,先求事件)(AB P 和)(A P ,再按定义计算)|(A B P 。
二、乘法公式由条件概率的定义立即得到:)0)(()|()()(>=A P A B P A P AB P (2)注意到BA AB =, 及B A ,的对称性可得到:)0)(()|()()(>=B P B A P B P AB P (3)(2)和(3)式都称为乘法公式, 利用它们可计算两个事件同时发生的概率.三、全概率公式全概率公式是概率论中的一个基本公式。
它使一个复杂事件的概率计算问题,可化为在不同情况或不同原因或不同途径下发生的简单事件的概率的求和问题。
自考04183概率论与数理统计(经管类)笔记-自考概率论与数理统§1.1 随机事件1.随机现象:确定现象:太阳从东方升起,重感冒会发烧等;不确定现象:随机现象:相同条件下掷骰子出现的点数:在装有红、白球的口袋里摸某种球出现的可能性等;其他不确定现象:在某人群中找到的一个人是否漂亮等。
结论:随机现象是不确定现象之一。
2.随机试验和样本空间随机试验举例:E1:抛一枚硬币,观察正面H、反面T出现的情况。
E2:掷一枚骰子,观察出现的点数。
E3:记录110报警台一天接到的报警次数。
E4:在一批灯泡中任意抽取一个,测试它的寿命。
E5:记录某物理量(长度、直径等)的测量误差。
E6:在区间[0,1]上任取一点,记录它的坐标。
随机试验的特点:①试验的可重复性;②全部结果的可知性;③一次试验结果的随机性,满足这些条件的试验称为随机试验,简称试验。
样本空间:试验中出现的每一个不可分的结果,称为一个样本点,记作。
所有样本点的集合称为样本空间,记作。
举例:掷骰子:={1,2,3,4,5,6},=1,2,3,4,5,6;非样本点:“大于2点”,“小于4点”等。
3.随机事件:样本空间的子集,称为随机事件,简称事件,用A,B,C,…表示。
只包含一个样本点的单点子集{}称为基本事件。
必然事件:一定发生的事件,记作不可能事件:永远不能发生的事件,记作4.随机事件的关系和运算由于随机事件是样本空间的子集,所以,随机事件及其运算自然可以用集合的有关运算来处理,并且可以用表示集合的文氏图来直观描述。
(1)事件的包含和相等包含:设A,B为二事件,若A发生必然导致B发生,则称事件B包含事件A,或事A包含于事件B,记作,或。
性质:例:掷骰子,A:“出现3点”,B:“出现奇数点”,则。
注:与集合包含的区别。
相等:若且,则称事件A与事件B相等,记作A=B。
(2)和事件概念:称事件“A与B至少有一个发生”为事件A与事件B的和事件,或称为事件A与事件B的并,记作或A+B。
《概率论与数理统计》课程教学大纲一、课程基本信息二、课程目标(一)总体目标:概率论与数理统计是研究随机现象客观规律性的数学学科,在高等工科学校教学计划中是一门基础理论课。
通过本课程的学习,使学生掌握概率论与数理统计的基本概念,基本理论和方法,从而使学生初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。
(二)课程目标:课程目标1:知识目标通过本课程的学习,学生系统掌握随机变量及其分布、参数估计与假设检验等重要知识。
课程目标2:技能目标通过本课程的基本概念、基本理论和基本方法的讲授及学生的练习,培养学生的数学推理,数理逻辑,演绎归纳,数据分析,假设论证能力。
课程目标3:素质培养(1) 通过本课程的教学,培养和提高学生对所学知识进行整理、概括、消化吸收能力,以及围绕教学内容阅读参考资料,自我扩充知识领域的能力。
(2) 通过作业和课堂讨论,培养学生口头表达能力,做到思路清晰,层次分明。
(3)通过作业,培养学生独立思考,深入钻研问题的习惯以及一题多解,举一反三的能力,应用数学的意识以及运用数学知识分析问题的良好品质。
(4)具有自主学习和终身学习的意识,有不断学习和适应发展的能力。
(三)课程目标与毕业要求、课程内容的对应关系三、教学内容第一章随机事件及其概率1.教学目标理解随机事件和样本空间的概念;熟练掌握事件之间的关系与基本运算。
理解事件频率的概念;了解随机现象的统计规律性。
知道概率的公理化定义;理解古典概率的概念;了解几何概率;掌握概率的基本性质;会应用这些性质进行概率计算。
理解条件概率的概念;掌握乘法定理、全概率公式和贝叶斯公式,并会应用这些公式进行概率计算。
理解事件独立性的概念;会应用事件的独立性进行概率计算。
2.教学重难点本节是基础知识,在高中阶段大部分已经学过,都是重点内容。
教学的重难点在于事件的三种关系:互斥,独立和包含,事件概率的两个公式:加法公式和乘法公式,以及全概率和贝叶斯公式的应用。