进位反馈移位寄存器的状态图
- 格式:pdf
- 大小:83.61 KB
- 文档页数:3
数字电子技术基础第四章习题及参考答案第四章习题1.分析图4-1中所示的同步时序逻辑电路,要求:(1)写出驱动方程、输出方程、状态方程;(2)画出状态转换图,并说出电路功能。
CPY图4-12.由D触发器组成的时序逻辑电路如图4-2所示,在图中所示的CP脉冲及D作用下,画出Q0、Q1的波形。
设触发器的初始状态为Q0=0,Q1=0。
D图4-23.试分析图4-3所示同步时序逻辑电路,要求:写出驱动方程、状态方程,列出状态真值表,画出状态图。
CP图4-34.一同步时序逻辑电路如图4-4所示,设各触发器的起始状态均为0态。
(1)作出电路的状态转换表;(2)画出电路的状态图;(3)画出CP作用下Q0、Q1、Q2的波形图;(4)说明电路的逻辑功能。
图4-45.试画出如图4-5所示电路在CP波形作用下的输出波形Q1及Q0,并说明它的功能(假设初态Q0Q1=00)。
CPQ1Q0CP图4-56.分析如图4-6所示同步时序逻辑电路的功能,写出分析过程。
Y图4-67.分析图4-7所示电路的逻辑功能。
(1)写出驱动方程、状态方程;(2)作出状态转移表、状态转移图;(3)指出电路的逻辑功能,并说明能否自启动;(4)画出在时钟作用下的各触发器输出波形。
CP图4-78.时序逻辑电路分析。
电路如图4-8所示:(1)列出方程式、状态表;(2)画出状态图、时序图。
并说明电路的功能。
1C图4-89.试分析图4-9下面时序逻辑电路:(1)写出该电路的驱动方程,状态方程和输出方程;(2)画出Q1Q0的状态转换图;(3)根据状态图分析其功能;1B图4-910.分析如图4-10所示同步时序逻辑电路,具体要求:写出它的激励方程组、状态方程组和输出方程,画出状态图并描述功能。
1Z图4-1011.已知某同步时序逻辑电路如图4-11所示,试:(1)分析电路的状态转移图,并要求给出详细分析过程。
(2)电路逻辑功能是什么,能否自启动?(3)若计数脉冲f CP频率等于700Hz,从Q2端输出时的脉冲频率是多少?CP图4-1112.分析图4-12所示同步时序逻辑电路,写出它的激励方程组、状态方程组,并画出状态转换图。
实验8移位寄存器实验报告移位寄存器实验报告(⼀)实验原理移位寄存器是⽤来寄存⼆进制数字信息并且能进⾏信息移位的时序逻辑电路。
根据移位寄存器存取信息的⽅式可分为串⼊串出、串⼊并出、并⼊串出、并⼊并出4种形式。
74194是⼀种典型的中规模集成移位寄存器,由4个RS 触发器和⼀些门电路构成的4位双向移位寄存器。
该移位寄存器有左移,右移、并⾏输⼊数据,保持及异步清零等5种功能。
有如下功能表 CLRN CLK S1 S0 × × × × 1 1 0 11 00 0 ⼯作状态 0 × 清零 1 0 保持1 ↑并⾏置数,Q 为ABCD 1↑串⾏右移,移⼊数据位为SRS11↑串⾏左移,移⼊数据位为SLS11↑保持(⼆)实验框图时钟脉冲输⼊串⾏输⼊并⾏输⼊ABCD清零输⼊模式控制输⼊并⾏输出QA 、QB 、QC 、QD74194移位寄存器(三)实验内容1.按如下电路图连接电路⼗个输⼊端,四个输出端,主体为74194.2.波形图参数设置:End time:2us Grid size:100ns波形说明:clk:时钟信号; clrn:置0s1s0:模式控制端 sl_r:串⾏输⼊端abcd:并⾏输⼊ qabcd:并⾏输出结论:clrn优先级最⾼,且低有效⾼⽆效;s1s0模式控制,01右移,10左移,00保持,11置数重载;sl_r控制左移之后空位补0或补1。
3.数码管显⽰移位(1)电路图(2)下载验证管脚分配:a,b,c,d:86,87,88,89 bsg[3..0]:99,100,101,102 clk:122 clk0:125 clrn:95 q[6..0]:51,49,48,47,46,44,43 s0,s1:73,72sl_r:82,83结论:下载结果与仿真结果⼀致,下载正确。
一、McBsp概述McBSP是TI公司生产的数字信号处理芯片的多通道缓冲串行口。
McBSP是在标准串行接口的基础之上对功能进行扩展,因此,具有与标准串行接口相同的基本功能。
它可以和其他DSP器件、编码器等其他串口器件通信。
它具有普通串口的以下特点:(1)全双工通信;(2)拥有两级缓冲发送和三级缓冲接收数据寄存器,允许连续数据流传输;(3)为数据发送和接收提供独立的帧同步脉冲和时钟信号;(4)能够与工业标准的解码器、模拟接口芯片(AICs)和其他串行A/D和D/A设备直接连接;(5)支持外部移位时钟或内部频率可编程移位时钟。
(6)128个通道用于接收传送。
(7)支持A-bis(8)接口直接连接工业标准的多媒体数字信号编解码器,A/D、D/A和模拟芯片。
此外,McBSP还具有以下特殊功能:(1)可以与IOM-2、SPI、AC97等兼容设备直接连接;(2)支持多通道发送和接收,每个串行口最多支持128通道;(3)串行字长度可选,包括8、12、16、20、24和32位;(4)支持μ-Law和A-Law数据压缩扩展;(5)进行8位数据传输时,可以选择LSB或MSB为起始位;(6)帧同步脉冲和时钟信号的极性可编程;(7)内部时钟和帧同步脉冲的产生可编程,具有相当大的灵活性。
二、McBSP的内部结构框图McBSP的内部结构框图三、McBSP结构与原理数据通道控制通道四、McBsp数据压缩功能。
图1-1 DXR数据发送寄存器图1-2 XSR数据发送移位寄存器表1-2 数据发送移位寄存器(XSR)位段说明图1-3 DRR数据接收寄存器表1-3 数据接收寄存器(DRR)位段说明图1-4 RBR数据接收缓存寄存器表1-4 数据接收缓存寄存器(RBR)位段说明图1-5 RSR数据接收移位寄存器表1-5 数据接收移位寄存器(RSR)位段说明图1-6 SPCR串口控制寄存器表1-6 串口控制寄存器(SPCR)位段说明图1-7 RCR接收控制寄存器表1-7 接收控制寄存器(RCR)位段说明图1-8 XCR发送控制寄存器表1-8 发送控制寄存器(XCR)位段说明图1-9 SRGR采样率发生控制寄存器表1-9采样率发生控制寄存器(SRGR)位段说明图1-10 MCR多通道控制寄存器表1-10多通道控制寄存器(MCR)位段说明图1-11 RCER接收通道使能寄存器表1-11 接收通道使能寄存器(RCER)位段说明图1-12 XCER发送通道使能寄存器表1-12 发送通道使能寄存器(XCER)位段说明图1-13 RCERE增强的接收通道使能寄存器0-3表1-13 增强的接收通道使能寄存器(RCERE)位段说明图1-14 XCERE增强的发送通道使能寄存器0-3 表1-14 增强的发送通道使能寄存器(RCERE)位段说明图1-15 PCR引脚控制寄存器表1-15 引脚控制寄存器(PCR)位段说明自定义数据结构1.数据接收三级缓存寄存器状态表1-16数据接收三级缓存寄存器状态段说明2.PC串口使能表1-16 PC串口使能段说明***********************华丽的分割线***********************************。
4 62习 题1.解:QQRS3.解: CP =0时,R D =S D =0,Q n+1=Q n ; CP =1时,S R R =D ,S D =S ;1D D n n n n Q S R Q S RSQ S RQ +=+=+=+不管S 、R 输入何种组合,锁存器均不会出现非正常态。
5.解:(1)系统的数据输入建立时间t SUsys =或门的传输延迟+异或门的传输延迟+锁存器的建立时间-与门的传输延迟=t pdOR +t pdXOR + t SU - t pdAND =18ns+22ns+20ns -16 ns =44ns 。
(2)4 63当C =1时, J =X X K = X Q K Q J Q n n n =+=+1 为D 触发器9. 解:当EN =0 ,Q n+1=Q n ;当EN =1,Q n+1=D ,则D EN Q EN Q n n ⋅+⋅=+11,令D EN Q EN D n ⋅+⋅=1即可。
10.解:根据电路波形,它是一个单发脉冲发生器,A 可以为随机信号,每一个A 信号的下降沿后;Q 1端输出一个脉宽周期的脉冲。
12.解:(1)(2)4 6415. 解:X =0时,计至9时置0000:03Q Q LD =,D 3D 2D 1D 0=0000X =1时,计至4时置1011:23Q Q LD =,D 3D 2D 1D 0=10112303Q Q X Q Q X LD +=,D 2=0,D 3=D 1=D 0=X16.解:当片1计数到1001时,置数信号LD 为低电平,这时,再来一个CP 脉冲,下一个状态就进入0000。
应该等到片0和片1的状态同时为1001时,片1的下一个状态才能进入0000。
改进后电路为:对改进后电路的仿真结果:17.解:4 6518.解:19. 解:从图所示电路图可知,S 1S 0=01,根据表4.8-3所示的74LS194功能表,电路处于右移功能。
右移数据输入端的逻辑表达式为:32IR Q Q D =。