§4.常见的数学建模方法(1)---数据拟合(曲线拟合)法
- 格式:ppt
- 大小:415.50 KB
- 文档页数:20
’.第二讲 数据拟合方法在实验中,实验和戡测常常会产生大量的数据。
为了解释这些数据或者根据这些数据做出预测、判断,给决策者提供重要的依据。
需要对测量数据进行拟合,寻找一个反映数据变化规律的函数。
数据拟合方法与数据插值方法不同,它所处理的数据量大而且不能保证每一个数据没有误差,所以要求一个函数严格通过每一个数据点是不合理的。
数据拟合方法求拟合函数,插值方法求插值函数。
这两类函数最大的不同之处是,对拟合函数不要求它通过所给的数据点,而插值函数则必须通过每一个数据点。
例如,在某化学反应中,测得生成物的质量浓度y (10 –3 g/cm 3)与时间t (min )的关系如表所示t1 2 3 4 6 8 10 12 14 16 y4.00 6.41 8.01 8.79 9.53 9.86 10.33 10.42 10.53 10.61 显然,连续函数关系y (t )是客观存在的。
但是通过表中的数据不可能确切地得到这种关系。
何况,由于仪器和环境的影响,测量数据难免有误差。
因此只能寻求一个近拟表达式y = ϕ(t )寻求合理的近拟表达式,以反映数据变化的规律,这种方法就是数据拟合方法。
数据拟合需要解决两个问题:第一,选择什么类型的函数)(t ϕ作为拟合函数(数学模型);第二,对于选定的拟合函数,如何确定拟合函数中的参数。
数学模型应建立在合理假设的基础上,假设的合理性首先体现在选择某种类型的拟合函数使之符合数据变化的趋势(总体的变化规律)。
拟合函数的选择比较灵活,可以选择线性函数、多项式函数、指数函数、三角函数或其它函数,这应根据数据分布的趋势作出选择。
为了问题叙述的方便,将例1的数据表写成一般的形式 t x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 y y 1 y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 y 10 一.线性拟合(线性模型)假设拟合函数是线性函数,即拟合函数的图形是一条平面上的直线。
数据拟合曲线算法
在数据拟合中,常用的曲线拟合算法有多种,具体选择哪一种算法取决于数据的特点以及我们希望达到的拟合效果。
以下是几种常见的数据拟合曲线算法:
1. 线性回归(Linear Regression):线性回归是一种基本的拟合算法,在数据中用一条直线来拟合数据点的分布。
通过使得拟合直线和实际数据点之间的误差最小,来找到最佳的拟合直线。
2. 多项式拟合(Polynomial Fitting):多项式拟合是一种可以拟合非线性关系的方法。
通过增加模型的多项式次数,使得模型能够更好地拟合复杂的数据分布。
3. 基于最小二乘法的拟合(Least Squares Fitting):最小二乘法是一种常见的拟合方法,旨在找到即使误差最小化的拟合曲线。
该方法可用于拟合线性模型、非线性模型等。
4. 样条插值(Spline Interpolation):样条插值是一种基于分段多项式的拟合方法。
通过将数据点之间的曲线段拟合为多项式曲线,使得整个曲线在数据点处连续,并最小化整体曲线的误差。
5. 非参数拟合(Nonparametric Fitting):非参数拟合不依赖于特定的函数形式,而是根据数据的分布来构建拟合模型。
常见的非参数拟合算法包括局部加权回归(Locally Weighted Regression)和核函数回归(Kernel Regression)等。
需要注意的是,选择拟合算法时需要根据实际情况评估算法的适用性及效果,以及避免过拟合或欠拟合问题。
同时,针对不同的数据类型和拟合目标,还有其他更为专门的拟合算法可供选择。
数学建模方法大汇总数学建模是数学与实际问题相结合,通过建立数学模型来解决实际问题的一种方法。
在数学建模中,常用的方法有很多种,下面将对常见的数学建模方法进行大汇总。
1.描述性统计法:通过总结、归纳和分析数据来描述现象和问题,常用的统计学方法有平均值、标准差、频率分布等。
2.数据拟合法:通过寻找最佳拟合曲线或函数来描述和预测数据的规律,常用的方法有最小二乘法、非线性优化等。
3.数理统计法:通过样本数据对总体参数进行估计和推断,常用的方法有参数估计、假设检验、方差分析等。
4.线性规划法:建立线性模型,通过线性规划方法求解最优解,常用的方法有单纯形法、对偶理论等。
5.整数规划法:在线性规划的基础上考虑决策变量为整数或约束条件为整数的情况,常用的方法有分支定界法、割平面法等。
6.动态规划法:通过递推关系和最优子结构性质建立动态规划模型,通过计算子问题的最优解来求解原问题的最优解,常用的方法有最短路径算法、最优二叉查找树等。
7.图论方法:通过图的模型来描述和求解问题,常用的方法有最小生成树、最短路径、网络流等。
8.模糊数学法:通过模糊集合和隶属函数来描述问题,常用的方法有模糊综合评价、模糊决策等。
9.随机过程法:通过概率论和随机过程来描述和求解问题,常用的方法有马尔可夫过程、排队论等。
10.模拟仿真法:通过构建系统的数学模型,并使用计算机进行模拟和仿真来分析问题,常用的方法有蒙特卡洛方法、事件驱动仿真等。
11.统计回归分析法:通过建立自变量与因变量之间的关系来分析问题,常用的方法有线性回归、非线性回归等。
12.优化方法:通过求解函数的最大值或最小值来求解问题,常用的方法有迭代法、梯度下降法、遗传算法等。
13.系统动力学方法:通过建立动力学模型来分析系统的演化过程,常用的方法有积分方程、差分方程等。
14.图像处理方法:通过数学模型和算法来处理和分析图像,常用的方法有小波变换、边缘检测等。
15.知识图谱方法:通过构建知识图谱来描述和分析知识之间的关系,常用的方法有图论、语义分析等。
数学建模中的参数拟合方法数学建模是研究实际问题时运用数学方法建立模型,分析和预测问题的一种方法。
在建立模型的过程中,参数拟合是非常重要的一环。
所谓参数拟合,就是通过已知数据来推算模型中的未知参数,使模型更加精准地描述现实情况。
本文将介绍数学建模中常用的参数拟合方法。
一、最小二乘法最小二乘法是一种常用的线性和非线性回归方法。
该方法通过最小化误差的平方和来估计模型参数。
同时该方法的优点在于可以使用简单的数学公式解决问题。
最小二乘法的基本思想可以简单地表示如下:对于给定的数据集合,设其对应的观测值集合为y,$y_1,y_2,...,y_n$,对应的自变量集合为x,$x_1,x_2,...,x_n$,则目标是找到一组系数使得拟合曲线最接近实际数据点。
通常拟合曲线可以用如下所示的线性方程表示:$$f(x)=a_0+a_1x+a_2x^2+...+a_kx^k$$其中,k为拟合曲线的阶数,$a_i$表示第i个系数。
最小二乘法的目标即为找到一组系数${a_0,a_1,...,a_k}$,使得曲线拟合残差平方和最小:$$S=\sum_{i=1}^{n}(y_i-f(x_i))^2$$则称此时求得的拟合数学模型为最小二乘拟合模型。
最小二乘法在实际问题中应用广泛,如线性回归分析、非线性回归分析、多项式拟合、模拟建模等领域。
对于非线性模型,最小二乘法的数学公式比较复杂,需要使用计算机编程实现。
二、梯度下降法梯度下降法是一种优化算法,通过求解函数的导数,从而找到函数的最小值点。
在数学建模中,梯度下降法可以用于非线性回归分析,最小化误差函数。
梯度下降法的基本思想为:在小区间范围内,将函数$f(x)$视为线性的,取其一阶泰勒展开式,在此基础上进行优化。
由于$f(x)$的导数表示$f(x)$函数值增大最快的方向,因此梯度下降法可以通过调整参数的值,逐渐朝向函数的最小值点移动。
具体地,对于给定的数据集合,设其对应的观测值集合为y,$y_1,y_2,...,y_n$,对应的自变量集合为x,$x_1,x_2,...,x_n$,则目标是找到一组系数使得拟合曲线最接近实际数据点。
拟合曲线的方法(一)拟合曲线拟合曲线是一种数据分析方法,用于找到最符合给定数据的函数曲线。
在实际应用中,拟合曲线广泛应用于计算机图形学、统计学和机器学习等领域。
不同的方法可以应用于不同类型的数据和问题,下面将介绍几种常见的拟合曲线方法。
线性拟合线性拟合是最简单也是最常见的拟合曲线方法之一。
其基本思想是通过一条直线来拟合数据点。
线性拟合常用于描述两个变量之间的线性关系。
线性拟合的数学模型可以表示为:y=a+bx,其中y是因变量,x是自变量,a是截距,b是斜率。
线性拟合的目标是通过最小化实际数据点和拟合直线之间的误差来确定最佳的a和b。
多项式拟合多项式拟合是一种通过多项式函数来拟合数据点的方法。
多项式函数是由多个幂函数组成的函数,可以适应各种形状的数据。
多项式拟合的数学模型可以表示为:y=a0+a1x+a2x2+⋯+a n x n,其中y是因变量,x是自变量,a0,a1,…,a n是拟合函数的系数。
多项式拟合的目标是通过最小化实际数据点和拟合曲线之间的误差来确定最佳的系数。
曲线拟合曲线拟合是一种通过曲线函数来拟合数据点的方法。
曲线函数可以是任意形状的函数,可以适应各种复杂的数据。
常见的曲线拟合方法包括:贝塞尔曲线拟合贝塞尔曲线拟合是一种用于拟合平滑曲线的方法。
贝塞尔曲线由控制点和节点构成,通过调整控制点的位置来改变曲线的形状。
贝塞尔曲线拟合的目标是通过最小化实际数据点和贝塞尔曲线之间的误差来确定最佳的控制点和节点。
样条曲线拟合样条曲线拟合是一种用于拟合光滑曲线的方法。
样条曲线由多个局部曲线段组成,每个曲线段由一组控制点和节点定义。
样条曲线拟合的目标是通过最小化实际数据点和样条曲线之间的误差来确定最佳的控制点和节点。
非线性拟合非线性拟合是一种用于拟合非线性关系的方法。
非线性关系在现实世界中很常见,例如指数函数、对数函数等。
非线性拟合的数学模型可以表示为:y=f(x,θ),其中y是因变量,x是自变量,θ是模型的参数。
数学建模常见的⼀些⽅法【04拟合算法】@⽬录数学建模常见的⼀些⽅法1. 拟合算法与插值问题不同,在拟合问题中不需要曲线⼀定经过给定的点。
拟合问题的⽬标是寻求⼀个函数(曲线),使得该曲线在某种准则下与所有的数据点最为接近,即曲线拟合的最好(最⼩化损失函数)。
1.1 插值和拟合的区别 插值算法中,得到的多项式f(x)要经过所有样本点。
但是如果样本点太多,那么这个多项式次数过⾼,会造成。
尽管我们可以选择分段的⽅法避免这种现象,但是更多时候我们更倾向于得到⼀个确定的曲线,尽管这条曲线不能经过每⼀个样本点,但只要保证误差⾜够⼩即可,这就是拟合的思想。
(拟合的结果是得到⼀个确定的曲线)1.2 求解最⼩⼆乘法1.3 Matlab求解最⼩⼆乘测试数据:x =4.20005.90002.70003.80003.80005.60006.90003.50003.60002.90004.20006.10005.50006.60002.90003.30005.90006.00005.6000>> yy =8.400011.70004.20006.10007.900010.200013.20006.60006.00004.60008.400012.000010.300013.30004.60006.700010.800011.50009.9000计算代码:>> plot(x,y,'o')>> % 给x和y轴加上标签>> xlabel('x的值')>> ylabel('y的值')>> n = size(x,1);>> k = (n*sum(x.*y)-sum(x)*sum(y))/(n*sum(x.*x)-sum(x)*sum(x))>> b = (sum(x.*x)*sum(y)-sum(x)*sum(x.*y))/(n*sum(x.*x)-sum(x)*sum(x))>> hold on % 继续在之前的图形上来画图形>> grid on % 显⽰⽹格线>> f=@(x) k*x+b; % 函数线>> fplot(f,[2.5,7]); % 设置显⽰范围>> legend('样本数据','拟合函数','location','SouthEast')计算过程:>> plot(x,y,'o')>> % 给x和y轴加上标签>> xlabel('x的值')>> ylabel('y的值')>> n = size(x,1);>> n*sum(x.*y)-sum(x)*sum(y)ans = 1.3710e+03>> n*sum(x.*x)-sum(x)*sum(x)ans = 654.4600>> k = (n*sum(x.*y)-sum(x)*sum(y))/(n*sum(x.*x)-sum(x)*sum(x))k = 2.0948>> b = (sum(x.*x)*sum(y)-sum(x)*sum(x.*y))/(n*sum(x.*x)-sum(x)*sum(x))b = -1.0548>> hold on>> grid on>> f=@(x) k*x+b;>> fplot(f,[2.5,7]);>> legend('样本数据','拟合函数','location','SouthEast')1.4 如何评价拟合的好坏线性函数是指对参数为线性(线性于参数)在函数中,参数仅以⼀次⽅出现,且不能乘以或除以其他任何的参数,并不能出现参数的复合函数形式。