第十二章 结构力学极限荷载
- 格式:ppt
- 大小:1.13 MB
- 文档页数:26
结构力学教学大纲英文名称:Structure Mechanics课程编号:课程类型:学科基础必修课总学时:90 学分:5.5适用对象:土木工程专业本科先修课程:高等数学、线性代数、理论力学、材料力学、计算机程序语言使用教材:《结构力学》(第一版),文国治,重庆大学出版社,2011.10,高等学校土木工程本科指导性专业规范配套系列教材。
参考书:1)《结构力学》(第四版上、下册),李廉锟,高教出版社,2004.07,全国优秀教材2)《结构力学》(上、下册),朱慈勉,高教出版社,2004,全国优秀教材3)《结构力学》,胡兴国,武汉工业大学出版社,2002。
4)《结构力学》(第二版上、下册),罗固源,重关大学出版社,2003.09,21世纪高等学校本科系列教材一、课程性质、目的和任务本课程是土木工程专业必修的一门主要的专业基础课。
本课程的教学目的是使学生在理论力学和材料力学的基础上进一步掌握分析计算杆件体系的基本原理和方法,了解各类结构的受力性能,培养结构分析与计算(包括手算与电算)方面的能力,为学习有关专业课程及进行结构设计和科学研究打下基础。
二、教学基本要求1)绪论了解结构计算简图及简化要点,荷载分类,约束和结点的类型和力学特性。
2)几何组成分析掌握平面几何不变体系的基本组成规律及其应用。
3)静定结构的受力分析灵活运用截面平衡法,熟练掌握梁和刚架内力图的作法以及桁架内力的计算方法,掌握静定组合结构和拱的内力的计算方法。
了解静定结构的力学特性。
4)虚功原理与结构的位移计算理解变形体虚功原理的内容及其应用,熟练掌握静定结构位移的计算方法,了解互等定理。
5)影响线理解影响线的概念,掌握作静定梁和桁架内力影响线的静力法,了解机动法。
会用影响线求移动荷载下结构的最大内力。
6)力法掌握力法的基本原理和用力法典型方程计算超静定结构在荷载、支座移动、温变作用下的内力。
会计算超静定结构的位移。
了解超静定结构的力学特性。
《结构力学》教学大纲大纲说明课程代码:5125015总学时:80学时(讲课76学时,上机4学时)总学分:5学分课程类别:必修适用专业:土木工程专业(本科)预修要求:高等数学、理论力学、材料力学课程的性质、目的、任务:结构力学是土木工程专业的一门主要的技术基础课。
它的任务是在学习理论力学和材料力学的基础上,了解和掌握杆件结构的计算原理和方法,熟悉各类结构的受力特点和性能,培养结构分析和计算的能力,为学习有关专业课程和解决生产实践中的结构力学问题打好基础。
通过学习,使学生掌握平面杆件结构的组成分析、静定结构和超静定结构的内力和位移的计算分析方法。
课程教学的基本要求:本课程的学习中,要密切联系实际,培养学生正确的分析问题的方法,注意正确理解掌握基本概念和基本方法。
考虑到课程性质,建议采用多媒体教学手段。
计算机应用是本课程的重要组成部分,在教学中应予以充分重视。
大纲的使用说明:本大纲适用于土木工程本科专业80课时的结构力学课程使用,可根据具体的课时情况作适当的增删。
大纲正文第一章绪论学时:2学时(讲课2学时)本章讲授要点:结构力学的研究对象和任务;平面杆件结构和荷载的分类;结构计算简图概念及确定计算简图的原则。
重点:结构力学的研究对象和任务;结构计算简图概念及确定计算简图的原则。
难点:确定计算简图第一节结构力学的研究对象和任务第二节结构的计算简图第三节平面杆件结构和荷载的分类第四节结构力学的学习方法习题:3题第二章平面体系的几何组成分析学时:4学时(讲课3学时,习题1学时)本章讲授要点:几何不变体系的基本组成规律;对体系几何组成的分析和判定;静定结构和超静定结构的几何组成特征。
重点:运用无多余约束的几何不变体系的三个简单组成规则分析一般体系的几何组成。
难点:三刚片体系中虚铰在无穷远处的情况。
第一节概述第二节几何不变体系组成规则及体系分析举例习题:6题第三章静定结构的内力计算学时:10学时(讲课8学时,习题2学时)本章讲授要点:梁、刚架的内力计算及内力图的绘制;多跨静定梁、静定平面刚架、三铰拱、受弯杆件与桁架杆件组合结构的内力计算;结点法和截面法计算静定平面架内力;三铰拱的受力特点,内力图特征,合理拱轴概念及静定结构的基本特征。
第12章 结构的极限荷载12.1 概述结构分析方法 弹性分析 塑性分析结构设计方法 弹性设计 塑性设计结构的弹性分析和设计:基本假定:第一,结构的材料服从虎克定律,应力与应变成正比; 第二,结构的变形和位移都是微小的。
内力计算和位移计算都可以应用叠加原理弹性设计时的强度条件:σ max≤ [σ ]=σyky材料屈服极限偏于保守!容许应力安全系数12.1 概述结构的弹性分析和设计:弹性设计时的强度条件:σ max≤ [σ ]=σyky材料屈服极限偏于保守!容许应力安全系数结构的塑性分析和设计:塑性设计时的强度条件:FP≤ [FP ]=FP u ku结构极限荷载更合理、经济容许荷载安全系数充分估计由弹塑性材料组成的超静定结构在超越材料屈服极限 以后的承载能力。
12.1 概述结构的塑性分析和设计:结构塑性分析 的主要任务塑性设计时的强度条件:FP≤ [FP ]=FP u ku结构极限荷载更合理、经济容许荷载安全系数极限状态与极限荷载: 结构变形随荷载增加而增大。
当荷载达到某一临界值时,不再增加荷载变形也会继续增大,这时结构丧失了进一步的承载能 力,这种状态称为结构的极限状态,此时的荷载称为极限荷载。
12.1 概述 弹性阶段:OA段应力与应变成本章塑性分析假定:正比,σ=Eε;变形和位移都是微小的; 塑性阶段:AB段,应力达到屈材料为理想弹塑性材料。
服极限σy,应变达εy=σy/E时;AB平行于ε轴,应力σ=σy为常量而应变ε可无限增长。
卸载规律:塑性阶段的某一点C卸载,相应的路径如图中平行于AO的虚线CD所示,即卸载的规律与弹性阶段相同。
残余应变:当应力减至零时,注:材料拉、压状态的 应力应变关系完全相同材料有残余应变,如图中OD。
12.1 概述本章塑性分析假定: 变形和位移都是微小的; 材料为理想弹塑性材料。
可见,对于弹塑性材料: 应力和应变并非一一对应; 必须了解加、卸载的全部“历史”,才能确定应力应变注:材料拉、压状态的 应力应变关系完全相同为进一步简化分析:本章还采用比例加载的假定: 所有的荷载均为单调增加,不出现卸载现象; 在加载过程中,所有的荷载均保持固定的比例,因而可以用 同一个参数(荷载因子)的倍数 来表示。
极限荷载的名词解释极限荷载,简称为极限载荷,是指结构在允许的极限条件下所能承受的最大力量或压力。
它是设计师在建筑、航空航天、汽车工程、桥梁和机械工程等领域中必须考虑的关键因素之一。
1. 极限荷载概述极限荷载在工程设计中具有重要意义。
无论是建筑物、桥梁、飞机还是汽车,都必须能够在特定的工作负荷下运行,而这些工作负荷不能超过其极限荷载的承载能力。
极限荷载研究的目的是确保工程或设备在正常工作条件下的安全可靠性,以及在异常负荷情况下的抗击压力和破坏的能力。
2. 极限荷载与结构安全极限荷载的考虑对于确保结构的安全性至关重要。
在设计阶段,工程师需要评估预期荷载以及结构所能承载的极限荷载。
这样的评估通常基于复杂的计算和经验公式,包括静力学、动力学、材料力学和结构力学等知识。
通过对各种力学条件的实际测试和模拟分析,设计团队可以确定结构的极限荷载,并相应地进行结构的加强和改进。
3. 极限荷载的影响因素极限荷载受许多因素的影响。
其中最重要的因素之一是物体的重量和形状。
不同形状的结构将受到不同程度的应力和压力。
其他因素包括运动速度、温度、湿度、材料的强度和刚度,以及使用环境的条件等。
在设计过程中,这些因素必须全面考虑,以确保结构具有足够的强度和稳定性。
4. 极限荷载的实践应用极限荷载的研究和应用广泛应用于各个工程领域。
在建筑设计中,极限荷载的考虑可以确保建筑物在各种自然灾害和外部冲击下的抵御能力。
在航空航天领域,极限荷载的研究应用于飞行器和航天器的设计和制造。
在汽车工程中,极限荷载的概念用来研究汽车零部件的强度和耐久性,确保其在各种驾驶条件下的安全性。
5. 极限荷载的意义和挑战极限荷载的考虑对于工程设计师和研究者而言至关重要。
一个可靠的结构需要经过良好的分析和合理的设计,以保证其在各种情况下的安全和稳定性。
然而,预测和计算极限荷载并非易事,它需要专业知识、经验和计算能力的共同运用。
此外,随着科技的进步和工程技术的发展,我们对于极限荷载的认识还在不断演进和完善中。