中性轴附近处于弹性状态,处于弹性的部分称为弹性核。
(3)塑性流动阶段
Mu
bh2 4
s
—— 塑性极限弯矩(简称为极限弯矩)
M u 1.5 —— 截面形状系数。圆形截面1.7,工字形
Ms
截面1.10-1.17,圆环截面1.27-1.40。
※塑性铰
当截面弯矩达到极限弯矩,这时的曲率记作 κ。u
s 3 2 Mu 0
(2)只需考虑平衡条件,无需考虑变形协调条件,比弹 性计算简单;
(3)超静定结构的极限荷载,不受温度变化、支座移动 等因素的影响。
例:求图示变截面梁的极限荷载。已知 AB 段的极限弯矩 为2Mu,BC 段为Mu 。
A
BP
2Mu
C
A
BD
3Mu
C
A
D
l/3 l/3 l/3
Mu
Mu D
C
B Mu
2Mu A
0.5Mu D
C
B
Mu
Pu min P1 , P2 , P3
7.5M u l
4Mu
P l 3 l
2l 3
1 3
2M
u
4M u ,
P1
21M u l
P l 3 l
2l 3
1 3
3M
u
Mu,
P2
9M u l
P l 3 l
2l 3
1 3 2M u
Mu,
P3
7.5M u l
例:求图示变截面梁的极限荷载。已知 AB 段的极限弯矩 为2Mu,BC 段为Mu 。
3. 连续梁的极限荷载
超静定结构有多余约束,必须出现足够多的塑性铰 才能成为机构,从而丧失承载能力。