同步发电机自动准同期并列综述(行业二类)
- 格式:doc
- 大小:6.38 MB
- 文档页数:16
第二章同步发电机的自动并列1.概述2.准同期并列的基本原理3.自动并列装置的工作原理4.频率差与电压差的调整5.数字型并列装置的组成脉动电压含有同期合闸所需要的所有信息:电压幅值差、频率差和合闸相角差。
但是,在实际装置中,却不能利用它检测并列条件。
因为它的幅值与发电机电压及系统电压有关。
这就使得利用脉动电压检测并列条件的越前时间信号和频率检测引入了受电压影响的因素,造成越前时间信号时间误差不准,从而成为引起合闸误差的原因之一。
逻辑关系满足即可以合闸。
必须在之前判定完毕。
YJt•装置的控制逻辑越前时间信号电压差不允许滑差不允许与门或非门合闸信号电压差、频率差判别区U tYJt stω正弦整步电压法采用与直接做差,得到正弦性的包络线来判别。
误差较大。
GU •并列的检测信号&两种方法应用于模拟式并列装置中,实现检测。
线性整步电压法X U &采用三角波(线性)的整步电压。
不考虑电压差,只考虑相角差。
精度较好。
整步电压自动并列装置监测并列条件的电压–正弦整步电压法–线性整步电压法X G U U =若:若X G U U ≠:K Z ——整流系数正弦整步电压法特点:正弦型整步电压不仅是相角差的函数,还与电压差有关。
此并列条件检测引入误差成为合闸误差的原因之一。
应用:早期曾采用,现已被“线性整步电压”替代。
线性整步电压法线性整步电压---指其幅值在一周期内与相角差δe分段按比例变化的电压。
注意:线性整步电压只与发电机电压和系统电压的相角差δe 有关,而与它们的幅值无关。
线性整步电压的表达式:U sl 的上升段)0,0)(()(sl≤≤≤−+=+=t t U U e s slme slmUδπωππδππ)0,0)(()(sl≥≤≤−=−=t t U U s slme slmUπδωππδππfS s T Δ=Δ==1f 222ππωπU slm ---U sl 的最大值U sl 的周期T S 表征发电机电压和系统电压频率差△f的大小:U sl 的下降段线性整步电压法2.因此:越前时间信号和频率差的检测不受电压幅值的影响,提高了并列装置的控制性能。
发电机自动准同期装置并列参数分析摘要:本文首先对同步发电机的并列运行相关内容进行基本阐述,然后分析发电机自动准同期装置并列相关参数,旨在促进我国电力企业发展提供参考和借鉴。
关键词:发电机;自动准同期装置;并列参数;分析研究1引言发电机在对用电设备进行电能输送时,需要借助电力系统。
同期并列技术就是将发电机与电力系统进行并列操作,帮助减少发电机并网过程中出现故障的概率。
随着我国经济社会和科学技术的不断发展,电力企业电网规模也不断扩大,发电机和数量和性能也在不断提高。
因此,加强对发电机自动准同期装置并列技术和相关参数进行不断研究和分析变得更加重要。
2 同步发电机并列运行同步发电机并列运行是指电力企业的同步发电机和电力系统根据一定的条件和规则并列运行。
这种运行情况能够帮助增大供电系统的稳定性,提高供电效果和质量,并使电力负荷的分配更加合理,从而综合性的提高企业的电力运行经济效益。
具体的并列运行发电机如下图1所示:根据运行的不同需要,并列操作是同步发电机的运行操作和电力系统解列这个两部分的共同并列运行操作,也叫同期操作。
图1.电力系统中并列运行的发电机2.1并列操作的要求和条件为了使得同步发电机的运行效果更加优异,减少故障的发生,发电机在投入的瞬间冲击电流需要根据实际情况达到最小,保证其最大数值在额定电流的2倍以下。
同时,在发电机进行并列运行时,需要控制波动效果在最小范围内,保证运行状态的稳定性。
3 相关自动准同期装置参数分析3.1基本原理影响自动准同期运行的因素有许多,其中频率差因素和相角差因素是一对相互影响且相对矛盾的因素。
当两个系统中的原有相位差为Δa≠0时,若需要满足频率要素相等,则Δa恒定,且不可能Δa=0。
当Δf =fg-fS≠0时, 即存在频率差时,Δa才会出现等于0的机会。
根据运行实际情况,与相位差相比,电压差和频率差对于整体电力运行系统和电力设备的影响更加微小,并且其电压和频率能够通过调整和控制较为简单的满足运行要求。
同步发电机自动准同期并列综述任治坪(新疆大学电气工程学院,新疆乌鲁木齐 830008)摘要:本文介绍的是同步发电机的自动准同期并列基本原理,其中包含了同期并列的基本基本条件,模拟式自动准同期装置的原理,微机型自动准同期装置的原理等内容。
关键字:同期并列整步电压恒定越前时间周期法解析法DFT类算法Parallel synchronous generatorautomatic synchronizing SummaryRen Zhiping(Electrical Engineering College,Xinjiang University,Urumqi,Xinjiang 830008)Abstract:This article describes a synchronous generator automatic synchronizing the basic principles of a tie, which contains the basic fundamental conditions for the same period in parallel, analog principle of automatic synchronizing devices, computer-based automatic synchronizing device principle and so on.Key word: Juxtaposition;Lockout V oltage;Echizen time constant;Cycle approach;Resolve approach;DFT-like algorithm0、引言随着工业社会的不断发展电力行业显得越来越重要,而同期并列是电力系统中经常进行的一项十分重要的操作。
不恰当的并列会对发电机和系统产生巨大的冲击损坏电气设备影响电力系统的稳定性造成成本升高甚至造成人员伤亡。
发电机自同期并列与准同期并列的介绍准同期:发电机与系统的电压差、频差、相角差均在允许的范围内的并列。
自同期:未加励磁的发电机在转速接近系统同步转速,滑差在允许的范围内的并列。
准同期并列时间长,但冲击小。
大型发电机应采用准同期方式。
自同期并列时间短,适于小水电的并网。
1、准同期并列实现发电机准同期并列通常采用灯光法和整步表法灯光并列法分灯光熄灭法和灯光旋转法两种灯光熄灭法灯光熄灭法接线图灯光熄灭法同期灯的接线图待并发电机与电网并列时,可将三只灯泡跨接在主开关的对应相的两端当发电机和电网相序一致时,三个灯泡呈同明同暗的变化调节发电机的电压和频率,使之与电网的电压和频率相接近当调到灯光亮暗的变化很慢时,就可作合闸的准备当三相指示灯同时熄灭时,表示开关两侧对应相之间的电压差接近为零此时应迅速合闸,将发电机并入电网运行灯光旋转法灯光旋转法接线从灯光旋转法接线图中看到,灯光旋转法与灯光熄灭法不同的是:三只灯中,只有一只灯接在开关的对应相的两端,如图中相另外两只灯是交叉接到开关两端的,如图中的灯、一般将三只灯装在一个圆周上当发电机与电网相序一致时,三只灯是旋转交替亮或暗灯光旋转的频率就是发电机和电网之间的频率差调节发电机电压和频率,当灯光旋转速度很慢时,就可做合闸的 803 第六篇水轮发电机组的起动运行维护图灯光旋转法同期灯接线图准备当相灯全暗,其他两相灯、一样亮的时刻,即可迅速合闸,把发电机并入电网运行用上面两种方法并列,也可同时检查发电机的相序当用灯光熄灭法并列时,如三只灯泡灯光不是同明同暗,而是呈旋转发光状态,说明发电机与电网相序不一致当用灯光旋转法并列时,如三只灯泡灯光不旋转,而是同明同暗,则也说明发电机与电网相序不一致这时,要将发电机的任意两根引出线调换,使相序与电网相序一致发电机之间或发电机与电网之间相序不一致时,一定不能进行并列运行操作,否则将使发电机受到严重损坏自同期并列自同期也是一种并列操作过程,但它不同于准同期其操作过程是这样的:先将水轮发电机组转动起来,当转速上升至稍低于机组的额定转速时,就将断路器闭合,这时电力系统给发电机定子绕组送进三相冲击电流形成旋转磁超然后励磁系统再给发电机转子绕组送进直流电流产生磁超使电力系统将发电机拉入同步运行状态在并列过程中,发电机因有冲击电流而受到一定的损伤是自同期的缺点优点是并列过程比较迅速,特别是在电力系统中发生事故或系统电压、频率发生剧烈波动时,采用准同期费时间多而且很困难,甚至不可能实现并列,但采用自同期方式就有可能较迅速地实现并列。
自动准同期并列装置的若干方面阐述1、引言并列操作是将同步发电机投入到电力系统运行的操作。
在发电厂内,凡可以进行并列操作的断路器都称为同步点。
通常每台发电机的断路器都是同步点,用以实现一台发电机的并列操作;母线联络断路器是同步点,作为同一母线上所有发电单元的后备同步点;三绕组变压器的三侧断路器都是同步点,在任一侧故障断开或检修后恢复时,可以减少并列过程中的倒闸操作,保证迅速可靠地恢复供电。
母线分段断路器一般不作为同步点。
并列操作的基本要求有两点,分别是(1)并列操作后,发电机应该能够迅速地被拉入同步运行;(2)并列操作的瞬间,发电机的冲击电流应满足要求,不能超过规定的允许值。
并列操作可以手动执行也可以自动执行。
手动准同期装置由运行操作人员手动调整发电机的电压和频率,并监视频率差、整步表及电压差,靠经验来判断合适的合闸时间,从而操作断路器进行合闸。
手动准同期装置主要有以下三方面的问题:1)延误并网时间;2)一般都是多台机组共用一套手动准同期装置,各机组的控制电缆多,接线复杂;3)存在重大的安全隐患。
故现在多采用自动同期装置来进行并列操作。
2、并列操作的方式同步发电机并列操作的方式有自同期及准同期两种。
按自动化程度等级的不同,准同期并列方式分为自动准同期、半自动准同期及手动准同期三种,本论文主要介绍自动准同期装置实现的自动准同步并列。
(1)准同期方式准同期并列要求在合闸操作前通过调整待并发电机组的转速及电压,当满足电压频率、相位及幅值后,由操作人员手动或由准同期装置自动选择合适时间发出合闸命令,这种合闸操作的冲击电流一般非常小,并且机组投入电力系统后能够被迅速地拉人同步运行。
采用准同期并列方式时,并列断路器主触头闭合瞬间应满足一下三个条件:1)运行系统与待并系统的电压幅值应相等;2)运行系统与待并系统的频率应相等;3)运行系统与待并系统的相位应相同。
实际上要求满足上述三个条件既不可能也没有必要。
因此,根据允许冲击电流的条件,规定了准同期并列允许的电压、频率和相角偏差范围。
点击这里您的位置>>主页>>实验指导>>实验一同步发电机准同期并列实验一、实验目的1.加深理解同步发电机准同期并列原理,掌握准同期并列条件;2.掌握微机准同期控制器及模拟式综合整步表的使用方法;3.熟悉同步发电机准同期并列过程;4.观察、分析有关波形。
二、原理与说明将同步发电视并入电力系统的合闸操作通常采用准同期并列方式。
准同期并列要求在合闸前通过调整待并机组的电压和转速,当满足电压幅值和频率条件后,根据“恒定越前时间原理”,由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令,这种并列操作的合闸冲击电流一般很小,并且机组投入电力系统后能被迅速拉人同步。
根据并列操作的自动化程度不同,又分为手动准同期、半自动准同期和全自动准同期三种方式。
正弦整步电压是不同频率的两正弦电压之差,其幅值作周期性的正弦规律变化。
它能反映两个待并系统间的同步情况,如频率差、相角差以及电压幅值差。
线性整步电压反映的是不同频率的两方波电压间相角差的变化规律,其波形为三角波。
它能反映两个待并系统间的频率差和相角差,并且不受电压幅值差的影响,因此得到广泛应用。
手动准同期并列,应在正弦整步电压的最低点(相同点)时合闸,考虑到断路器的固有合闸时间,实际发出合闸命令的时刻应提前一个相应的时间或角度。
自动准同期并列,通常采用恒定越前时间原理工作,这个越前时间可按断路器的合闲时间整定。
准同期控制器根据给定的允许任差和允许频差,不断地检查准同期条件是否满足,在不满足要求时闭锁合闸并且发出均压均频控制脉冲。
当所有条件均满足时,在整定的越前时刻送出合闸脉冲。
三、实验项目和方法(-)机组启动与建压l.检查调速器上“模拟调节”电位器指针是否指在0位置,如不在则应调到0位置;2.合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄。
调速器面板上数码管在并网前显示发电机转速(左)和控制量(右),在并网后显示控制量(左)和功率角(右)。
电力系统自动化同步发电机同期系统与并列操作电力系统自动化同步发电机同期系统是现代电力系统中一个非常重要的组成部分,其主要作用是确保发电机在并网运行时,能够与系统其他发电机和负荷保持同步,避免出现失步现象。
并列操作是指多台发电机同时在同一系统中运行,这个过程需要同步发电机同期系统的支持和协调,以确保各台发电机能够稳定、安全地运行。
同步发电机同期系统的主要作用是使发电机与电网的电压、频率和相位相同,并保证其输出的电能满足系统需求并能进行平稳地功率交换。
同期系统包括同期器、速度控制和电压调节等组件。
其中,同期器主要用于检测发电机转速,控制发电机励磁,保证发电机与电网频率相同;速度控制主要用于控制机组转速,保证发电机与电网同步;电压调节用于控制电网电压,使发电机输出电能符合系统需求。
并列操作时,同步发电机同期系统需要协调各台发电机的运行状态,保证它们的频率和相位相同。
在发电机并列运行时,通常采用一台发电机作为主发电机,其余发电机则作为从属发电机,通过控制主发电机的输出功率和电压来控制整个系统的运行。
同期系统需要对发电机进行速度和电压调节,以保证发电机输出的电能符合系统需求。
此外,同步发电机同期系统还需要监控各台发电机的运行状态,当出现故障时及时处理,以确保系统稳定、安全地运行。
在电力系统中,同步发电机同期系统是一个非常重要的组成部分,其作用不仅可以保证发电机的正常运行,还可以提高电力系统的安全可靠性。
在并列操作中,同步发电机同期系统的协调和控制能力特别重要,它们直接关系到整个系统的运行和稳定性。
因此,对同步发电机同期系统的研究和应用具有重要的意义,这需要我们在关注它的同时,不断深入探索和利用它的优势,为电力系统的发展和健康运行做出贡献。
实验报告课程名称: 电力系统分析综合实验 指导老师: 成绩:__________________实验名称:____同步发电机准同期并列实验____实验类型:________________同组学生姓名:__________一.实验目的1、加深理解同步发电机准同期并列原理,掌握准同期并列条件;2、掌握微机准同期控制器及模拟式综合整步表的使用方法;3、熟悉同步发电机准同期并列过程;4、观察、分析有关波形。
二.原理与说明将同步发电机并入电力系统的合闸操作通常采用准同期并列方式。
准同期并列要求在合闸前通过调整待并机组的电压和转速,当满足电压幅值和频率条件后,根据“恒定越前时间原理”,由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令,这种并列操作的合闸冲击电流一般很小,并且机组投入电力系统后能被迅速拉入同步。
根据并列操作自动化程度的不同,又分为:手动准同期、半自动准同期和全自动准同期三种方式。
正弦整步电压是不同频率的两正弦电压之差,其幅值作周期性的正弦规律变化。
它能反映两个待并系统间的同步情况,如频率差、相角差以及电压幅值差。
线性整步电压反映的是不同频率的两方波电压间相角差的变化规律,其波形为三角波。
它能反映两个待并系统间的频率差和相角差,并且不受电压幅值差的影响,因此得到广泛应用。
手动准同期并列,应在正弦整步电压的最低点(同相点)时合闸,考虑到断路器的固有合闸时间,实际发出合闸命令的时刻应提前一个相应时间或角度。
自动准同期并列,通常采用恒定越前时间原理工作,这个越前时间可按断路器的合闸时间整定。
准同期控制器根据给定的允许压差和频差,不断检查准同期条件是否满足,在不满足要求时闭锁合闸并且发出均匀均频控制脉冲。
当所有条件满足时,在整定的越前时刻送出合闸脉冲。
三.实验项目和方法1.机组微机启动和建压(1)在调速装置上检查“模拟调节”电位器指针是否指在0位置,如果不在,则应调到0位置;(2)合上操作台的“电源开关”,在调速装置、励磁调节器、微机准同期控制器上分别确认其“微机正常”灯为闪烁状态,在微机保护装置上确认“装置运行”灯为闪烁状态。
同步发电机准同期并列运行一、并列操作的意义同步发电机投入电力系统并列运行的操作,或者,电力系统解列的两部分进行并列运行的操作,被称为并列或同期操作。
随着负荷的波动,电力系统中发电机运行的台数也经常要变化。
因此,同步发电机的并列操作是电厂的一项重要操作,另外,当系统发生事故时,也常要求将备用发电机组迅速投入电网运行。
可见,在电力系统运行中并列操作是较为频繁的。
电力系统的容量在不断增大,同步发电机的单机容量也越来越大,大型机组不恰当的并列操作将导致严重后果。
因此,对同步发电机的并列操作进行研究,提高并列操作的准确度和可靠性,对于系统的可靠运行具有很大的现实意义。
同步发电机的并列运行方法可以分为准同期并列运行和自同期并列两种。
在电力系统正常运行情况下,一般采用准同期并列方法将发电机组投入运行。
自同期并列方法法已经很少采用,只有当电力系统发生事故时,为了迅速投入水轮发电机组,过去曾采用自同期并列方法。
随着自动控制技术的进步,特别是微型数字式自动并列方法已日趋成熟,现在也可以用准同期法快速投运水轮发电机组。
二、准同期并列条件待并发电机组先加励磁电流,调节其端电压的状态参数使之符合并列条件,再合上断路器QF ,这种操作为准同期并列。
发电机准同期并列的理想条件为并列断路器两侧电源电压三个状态量全部相等,即(1) 或 (即频率相等) (2) (即电压幅值相等)(3)(即相角差为零) 这是,并列合闸的冲击电流等于零,斌且并列后发电机G 与电网立即进入同步运行,不发生任何扰动现象。
但是,实际运行中待并发电机组的调节系统很难实现上边提到的理想条件调节。
因此,三个条件很难同时满足。
其实在实际操作中也没有这样苛求的必要。
G Xωω=G X f f =G X U U =0e δ=因为并列合闸时只要求冲击电流较小、不危及电气设备,合闸后发电机组能迅速拉入同步运行,对待并发电机和电网运行的影响较小,不致引起不良后果。
因此,现实情况中同步电机并列应遵循的原则:(1)并列断路器合闸时,冲击电流应尽可能小,其瞬时最大值一般不超过1~2倍的额定电流。
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!第六章同期系统将一台单独运行的发电机投入到运行中的电力系统参加并列运行的操作,称为发电机的并列操作。
同步发电机的并列操作,必须按照准同期方法或自同期方法进行。
否则,盲目地将发电机并入系统,将会出现冲击电流,引起系统振荡,甚至会发生事故、造成设备损坏。
准同期并列操作,就是将待并发电机升至额定转速和额定电压后,满足以下四项准同期条件时,操作同期点断路器合闸,使发电机并网。
(!)发电机电压相序与系统电压相序相同;(")发电机电压与并列点系统电压相等;(#)发电机的频率与系统的频率基本相等;($)合闸瞬间发电机电压相位与系统电压相位相同。
自同期并列操作,就是将发电机升速至额定转速后,在未加励磁的情况下合闸,将发电机并入系统,随即供给励磁电流,由系统将发电机拉入同步。
自同期法的优点:!合闸迅速,自同期一般只需要几分钟就能完成,在系统急需增加功率的事故情况下,对系统稳定具有特别重要的意义;"操作简便,易于实现操作自动化。
因为在发电机未加励磁电流时合闸并网,不存在准同期条件的限制,不存在准同期法可能出现的问题;#在系统电压和频率因故降低至不能使用难同期法并列操作时,自同期方法将发电机投入系统提供了可能性。
自同期法的缺点是:未加励磁的发电机合闸并入系统瞬间,相当一个大容量的电感线圈接入系统,必然会产生冲击电流,导致局部系统电压瞬间下降。
一般自同期法使用于水轮发电机及发电机—变压器组接线方式的汽轮发电机。
在采用自同期法实施并列前,应经计算核对。
发电厂发电机的并列操作断路器,称为同期点。
除了发电机的出口断路器之外在一次电路中,凡有可能与发电机主回路串联后与系统(或另一电源)之间构成唯一断路点的断路器,均可作为同期点。
例如,发电机—变压器组的高压侧断路器,发电机—三绕组变压器组的各侧断路器,高压母线联络断路器及旁路断+!8+ 8+ 路器,都可作为同期点。
同步发电机自动准同期并列综述任治坪(新疆大学电气工程学院,新疆乌鲁木齐 830008)摘要:本文介绍的是同步发电机的自动准同期并列基本原理,其中包含了同期并列的基本基本条件,模拟式自动准同期装置的原理,微机型自动准同期装置的原理等内容。
关键字:同期并列整步电压恒定越前时间周期法解析法DFT类算法Parallel synchronous generatorautomatic synchronizing SummaryRen Zhiping(Electrical Engineering College,Xinjiang University,Urumqi,Xinjiang 830008)Abstract:This article describes a synchronous generator automatic synchronizing the basic principles of a tie, which contains the basic fundamental conditions for the same period in parallel, analog principle of automatic synchronizing devices, computer-based automatic synchronizing device principle and so on.Key word: Juxtaposition;Lockout V oltage;Echizen time constant;Cycle approach;Resolve approach;DFT-like algorithm0、引言随着工业社会的不断发展电力行业显得越来越重要,而同期并列是电力系统中经常进行的一项十分重要的操作。
不恰当的并列会对发电机和系统产生巨大的冲击损坏电气设备影响电力系统的稳定性造成成本升高甚至造成人员伤亡。
本文即针对发电机同期并列的原理及过程进行了阐述。
1、准同期装置的发展电力系统中的同期并列方式主要有自同期并列和准同期并列两种,其中自同期并列主要用于水轮发电机组,作为处理系统事故的重要措施之一。
但是由于自同期的使用不可避免地会出现较大的冲击电流并伴随母线电的下降,因此所使用的场合不多,相反应用最广泛的是准同期并列,我国是世界上微机准同期装置最早研制的国家之一,1982年在安徽陈村水电站成功投入了第一台微机同期装置。
八十年代中期又陆续推出了一些类似装置。
目前国内有许多科研、制造单位都在进行微机自动准同步装置的研制。
准同期装置的发展经历了如下三代产品:第一代,在二十世纪六十年代以前,我国大多采用“旋转灯光法”进行准同期并列操作14。
这是最原始的准同期方法。
后来改用指针式电磁绕组的整步表构成的手动准同期装置。
这种方法仍然应用在常规的设计中。
第二代准同期装置是以许继的zz03和ZZQS为代表的模拟式自动准同期装置。
它用分立晶体管元件搭建硬件电路,对同期条件进行检测和处理。
ZZQ3和ZZQS自动准同期装置的出现,极大的提高了并网速度和可靠性,但由于模拟式同期装置用模拟电子元件拟合,必然带来诸如导前时间不稳定、阻容电路作为微分电路的条件约束、构成装置元器件参数漂移不稳定等问题。
模拟式的同期装置合闸准确度比较低,它无法指示装置的运行状态,不能进行故障自检等,现在已经基本被淘汰。
第三代准同期装置是微机式自动准同期装置,微处理器的诞生对自动准同期装置技术指标的提升产生了质的飞跃,深圳市智能设备开发有限公司研制的SID·2系列多功能微机自动准同期装置比较具有代表性。
它是我国最早从事微机准同期控制器研究、开发、生产的企业之一,相继推出了QSA 型、SID.I型、SID.2型、SID-2V系列发电机用微机准同期控制器及SID.2T系列线路用微机准同期控制器,具有高精度、高可靠性、人机界面友好、操作方便、接线简单等特点。
在提高并网速度和可靠性的同时,大大提高了合闸准确度。
2、准同期并列的条件发电机准同期并列时的电压向量图如图 1.1所示。
发电机组在未投入系统运行之前,它的电压U。
与系统电压U的状态量往往不等,须对待并发电机组进行适当的操作,使之符合并列条件后才允许断路器合闸作并网运行。
发电机并网的同期条件保证了发电机投入到电网运行时,冲击电流比较小,减小系统对发电机组的冲击;迅速进入同步运行状态,减小对电力系统的扰动。
图1.1发电机组同期并列的理想条件是:(1) 并列断路器两侧电源电压的电压幅值相等;(2) 并列断路器两侧电源电压的频率相等:(3) 在并网合闸的瞬间,并列断路器两侧电源电压的相角差为零。
此时,并列合闸的冲击电流为零,而且并列后发电机组与电网立即进入同步运行,不会发生任何扰动现象。
但实际并列操作时三个条件很难同时满足,而且这样势必延长并网时间,造成大量的空转能耗。
其实在实际操作中也没有这样苛刻的必要。
因为并列合闸时只要冲击电流较小,不危及电气设备,合闸后发电机组能迅速拉入同步运行,对待并发电机和电网运行的影响较小,不致引起任何不良后果。
因此,在实际并列操作中,并列的实际条件允许有一定的偏差。
我们称之为准同期条件。
发电机实际并网时的准同期条件是:(1) 并列断路器两侧电源电压的电压差必须在允许的范围内;(2) 并列断路器两侧电源电压的频率差必须在允许的范围内;(3)在并网合闸的瞬间,并列断路器两侧电源电压的相角差在允许的范围内。
以上三条分别是准同期并列的电压条件、频率条件和相位条件。
发电机并网的准同期条件要求待并发电机合闸开关的主触头在相位差为零的瞬间闭合,也就是在脉动电压包络线的过零点闭合。
在此情况下,发电机可以平滑地并入电网,而不会有任何冲击。
3、发电机自动准同期并列装置3.1 同期并列基本原理自动准同期装置一般由电源部分合闸部分均频部分和均压部分组成,如图2.1 所示图 3.1自动准同期的基本构成系统电压和发电机电压分别经过电压互感器降压后送入自动准同期装置自动同期装置由均频控制单元均压控制单元和合闸控制单元三部分组成均频控制单元自动检测发电机电压与系统电压频率差的方向发出增速或减速信号送到机组调速器的频率给定环节自动调节发电机电压的频率使频率差减小均压控制单元自动检测发电机电压与系统电压的幅值差的方向发出升压或降压信号送到发电机励磁调节器的电压给定环节自动地调节发电机电压的幅值使幅值差减小合闸控制单元自动检测发电机电压与系统电压之间的频率差和幅值差在频率差和幅值差均小于整定值时在相角差σ=0 前一个发电机断路器的合闸时间(恒定越前时间)发出合闸信号送到发电机断路器的控制回路使断路器合闸。
3.2 模拟式自动准同期装置的原理在微处理器问世之前自动准同期装置多由分立元件或少量集成块构成的模拟电路来实现现在电力系统中运行的模拟式自动准同期装置大都利用线性整步电压通过线性整步电压来获得恒定越前时间而且线性整步电压使频率差的检测也不受电压幅值的影响可以提高并列装置的控制性能线性整步电压形成电路一般由降压变压器整形电路相敏电路和滤波电路组成整步电压zb U 和时间t 成线性关系其值只与发电机电压和系统电压的相角差有关而与它们的幅值无关若并列时系统电压瞬时值为(3.1) 发电机侧瞬时值为(3.2) 图3.2 是发电机电压和系统电压矢量图在滑差存在的情况下系统电压与发电机电压之间的相角差d 不为常数而是时间t 的函数即(3.3)图 3.2 电压矢量图Wg 、W s ---发电机和系统角频率θs ---系统电压初相角随着t的变化δ从0 到2π 做周期性变化。
线性整步电压是指其幅值在一周期内与角差δ 分段按比例变化的电压。
在模拟式自动准同期装置中采用的线性整步电压,一般呈三角形波形,如图3.3。
图3.3(a)表示相角差由0 ~ 2π变化时,线性整步电压的波形,其特点如下:当δ在0 ~π区间时,线性整步电压u与相角差δ 成正比,即u=k δ,其中k 为比例常数,线性整步电压的大小随δ 的增加而增大;当δ=0 时,线性整步电压有最小值,其值为零;当δ=π 时,线性整步电压有最大值,其值为kπ,是常数。
当δ在π~ 2 π区间时,线性整步电压仍与相角差δ成正比,即u=k(2π-δ),此时线性整步电压的大小随δ的增加而成比例地减少,到δ=2π时,又达到最小值u= 0。
因此,线性整步电压幅值的大小与相角差之δ之间是线性关系,而与同期电压U s,U g 的幅值无关。
图3.3(b)将线性整步电压的角度横坐标δ改为时间横坐标t,由于t=δ/ωs故滑差ws 不同时,线性整步电压虽然最大值一样,但是它们的滑差周期的长短却不同,因此线性整步电压同样也可以用于检查同期条件。
图3.3(c)是本章讨论的自动准同期装置的线性整步电压特性相当于取δ0=π、其特点是当δ在-π~0区间时,u与(δ+π)成正比,即u=Cδ+A (A=Cπ)(3.4)所以线性整步电压随δ的增加而加大。
当δ=0 时,线性整步电压有最大值A;当δ 在0 ~ π区间时,u值与(π-δ)成正比,即u= A –Cδ(3.5)此时线性整步电压的大小随δ的增加而成比例地减小,到δ=2π时达到最小值,即u=0,由此可见,图3.3(c)的线性整步电压幅值与角差δ 之间也是分段的线性关系,而与同期电压的幅值无关。
图 3.3 线性整步电压波形图模拟式准同期大都利用以上所述的线性整步电压来检查准同期条件是否满足,其中包括频差检查、压差检查和恒定越前时间的形成等,下面分别讨论。
3.2.1线性整步电压的形成不同的自动准同期装置中形成线性整步电压的电路不尽相同,但其工作原理却大同小异,其形成电路示意图如图3.4(a)所示。
发电机电压和系统和系统电压经过整形电路变成方波U1 、U2 ,方波信号经过相敏电路,由于发电机电压和系统电压的频率不同,因此形成了一组宽度由小到大,又逐渐减小的方波U3,最后,U3经过滤波电路就形成了如图3.3 (a)的整步电压波形。
波形形成过程如图3.4(b)所示。
3.2.2恒定越前时间的形成图 3.5 电路是某同期装置恒定越前时间形成电路,线性整步电压经过由R1、C1组成的比例-微分电路之后,送入由三极管BG1、BG2组成的电平检测器与电平检测器的翻转电平(BG2 的基极电平)进行比较,由BG3 集电极输出恒定越前时间信号[1]。
图3.6 是恒定越前时间形成波形图。
图中u1、u2分别为电流IR 和IC在R2 上形成的电压。
从图中可以看出,对应于不同滑差的两个线性整步电压产生的越前时间t1=t2。
3.4 (a)整步电压波形形成电路示意图3.4 (b) 整步电压形成电路波形图图 3.5 恒定越前时间形成电路图 3.6 利用线性整步电压获得导前时间波形图3.2.3频差检测原理作为准同期条件之一的频率差检测的原理可以用图3.7 说明。