耐热钢
- 格式:doc
- 大小:561.00 KB
- 文档页数:46
耐热钢密度密度的概念密度是物质单位体积的质量,用于描述物质的紧密程度。
在工程领域中,密度是一个重要的物性参数,对于耐热钢这样的特殊材料来说,密度也是一个关键指标。
耐热钢的定义和应用耐热钢是一种具有良好抗高温性能的特种钢材。
它通常用于制造高温设备和零件,例如锅炉、汽轮机、化工设备等。
耐热钢能够在高温环境下保持较好的力学性能和抗氧化性能,因此被广泛应用于各个行业。
耐热钢密度的重要性耐热钢密度是评估其质量和性能的重要指标之一。
通过了解耐热钢的密度,可以更好地了解其结构紧密程度、化学成分以及力学性能等方面。
同时,在设计和制造高温设备时,对材料的选择也需要考虑到其密度,以确保设备具有足够的强度和稳定性。
耐热钢密度与材料性能的关系耐热钢密度与其它物理性能,如力学性能、热膨胀系数等之间存在一定的关系。
一般来说,密度较高的耐热钢具有更好的力学性能和更低的热膨胀系数。
这是因为高密度意味着原子之间的相互作用更强,结构更加紧密,从而提高了材料的强度和稳定性。
耐热钢密度测试方法测量耐热钢密度的常用方法包括水排法和气排法。
水排法水排法是一种常见且简便的测量方法。
具体步骤如下:1.准备一个装有水的容器,并称重记录容器质量。
2.将待测的耐热钢样品完全浸入水中,并记录样品质量。
3.根据样品质量和容器质量计算出样品体积。
4.根据样品质量和体积计算出样品密度。
气排法气排法是另一种常用的测量方法,适用于较大尺寸和不易溶于水的样品。
具体步骤如下:1.准备一个密闭的容器,并称重记录容器质量。
2.将待测的耐热钢样品放入容器中,确保容器完全密封。
3.通过压缩空气将容器内的气体逐渐排出,并记录排出的气体体积。
4.根据样品质量和排出的气体体积计算出样品密度。
耐热钢密度的典型数值耐热钢密度因材料成分和制造工艺不同而有所差异,下面是一些常见耐热钢材料的密度范围:•铸造耐热钢:6.8~7.8 g/cm³•锻造耐热钢:7.2~7.8 g/cm³需要注意的是,这只是一些典型数值,具体的密度取决于材料配方和工艺参数等因素。
5.1.4.2 耐热钢耐热钢是指在高温下有良好的化学稳定性和较高强度,能较好适应高温条件的特殊合金钢。
主要用于制造工业加热炉、内燃机、石油及化工机械与设备等高温条件工作的零件。
(1)耐热性的概念钢的耐热性包括热化学稳定性和高温强度两方面的涵义。
热化学稳定性是指钢在高温下抵抗各类介质的化学腐蚀的能力,其中最基本且最重要的是抗氧化性。
热化学稳定性主要由钢的化学成分决定。
在钢中加人Cr、Al和Si对提高抗氧化能力有显著的效果,因为Cr、Al和Si在高温氧化时能与氧形成一层完整致密具有保护性的Cr2O3,A12O3或SiO2氧化膜。
其中Cr 是首选的合金元素,当钢中WCr≈15%时,钢的抗氧化温度可达900℃;WCr ≈20%~25%时,钢的抗氧化温度可达1100℃。
稀土(少量的钇、铈等)元素也能提高耐热钢的抗高温氧化的能力。
这主要是由于稀土氧化物除了能改善氧化膜的抗氧化性能外,还能改善氧化膜与金属表面的结合力。
在钢的表面渗铝、渗硅或铬铝、铬硅共渗都有显著的抗氧化能力。
高温强度是指钢在高温下抵抗塑性变形和断裂的能力。
常用蠕变极限和持久强度这两个力学性能指标来考核。
通过在钢中加入Cr、Ni、W、Mo等元素形成固溶体,强化基体,提高再结晶温度,增加基体组织稳定性;加入V、Ti、Nb、Al等元素,形成硬度高、热稳定性好的碳化物,阻止蠕变的发展,起弥散强化的作用;微量B与稀土(RE)元素,强化晶界等措施可提高钢的高温强度。
(2)常用耐热钢按使用特性不同,耐热钢分为以抗氧化性为主要使用特性的抗氧化钢和以高温强度为主要使用特性的热强钢。
①抗氧化钢抗氧化钢大多数是在碳质量分数较低的高Cr钢、高CrNi钢或高Cr—Mn 钢基础上添加适量Si或Al配制而成的,主要有铁素体型和奥氏体型两类。
铁素体型抗氧化钢,如1Crl3SiAl,其最高使用温度900℃,常用作喷嘴、退火炉罩等。
奥氏体型抗氧化钢,如2Cr20Mn9Ni2Si2N和3Crl8Mnl2Si2N 钢具有良好的抗氧化性能(最高使用温度可达1000℃、抗硫腐蚀和抗渗碳能力,还具有良好的铸造性能,所以常用于制造铸件,还可进行剪切、冷热冲压和焊接。
最耐高温的钢材排名一、铬镍奥氏体不锈钢(如310S)1. 耐温性能- 310S不锈钢具有良好的耐高温性能,能在900 - 1150℃的高温环境下保持较好的强度和抗氧化性。
其铬含量高达24 - 26%,镍含量为19 - 22%,这种高铬镍的成分组合使其在高温下形成致密的氧化铬保护膜,阻止进一步氧化。
2. 应用领域- 常用于高温炉部件,如炉胆、炉管等,在化工、石油等行业的高温反应设备中也有广泛应用。
二、镍基高温合金(如Inconel 600、Inconel 718等)1. Inconel 600- 耐温性能- 可以承受高达1100℃左右的高温。
它具有优异的高温强度和抗氧化、抗腐蚀性能,镍含量超过72%,还含有铬(14 - 17%)等元素。
铬元素有助于提高抗氧化性,而镍则赋予合金良好的高温稳定性。
- 应用领域- 在核工业中的高温反应堆部件、化工行业的高温耐腐蚀设备等方面应用广泛。
2. Inconel 718- 耐温性能- 在650 - 980℃范围内具有较高的强度和良好的抗疲劳性能。
它含有镍(约50 - 55%)、铬(17 - 21%)、铌(4.75 - 5.5%)等多种元素,铌的加入通过形成γ''相沉淀强化,提高合金在高温下的强度。
- 应用领域- 常用于航空发动机高温部件,如涡轮盘、叶片等,也在石油开采的高温高压环境设备中有应用。
三、钴基高温合金(如Haynes 188)1. 耐温性能- Haynes 188钴基高温合金的熔点较高,可在1090℃左右的高温下使用。
它含有约22%的铬、22%的镍、14%的钨等元素。
钨元素提高了合金的高温强度,铬和镍有助于抗氧化和抗腐蚀。
2. 应用领域- 在航空航天领域的高温燃烧室部件、燃气轮机的高温部件等方面有应用。
四、铁素体耐热钢(如1Cr13)1. 耐温性能- 1Cr13铁素体耐热钢能够在500 - 700℃的温度范围内工作。
它的铬含量为11.5 - 13.5%,铬元素使钢在高温下形成抗氧化的保护膜,具有一定的高温强度和抗氧化性。
耐热钢热裂倾向检测
耐热钢是一种能够在高温环境下保持其力学性能的钢铁材料。
在高温工作条件下,钢材可能会出现热裂倾向,这是指在冷却过程中由于应力积累而发生的裂纹现象。
为了检测耐热钢的热裂倾向,通常会采取以下几种方法:
1. 热裂倾向实验,通过在特定温度下对钢材进行拉伸或弯曲等实验,观察其是否出现裂纹,从而评估其热裂倾向。
2. 金相显微镜观察,利用金相显微镜对钢材的组织结构进行观察,分析晶粒大小、晶界清晰度等因素,来推断材料的热裂倾向。
3. 热模拟试验,模拟实际工作条件下的温度和应力,对钢材进行热模拟试验,观察其是否发生裂纹,以判断其热裂倾向。
4. 热裂倾向预测模型,利用数学模型和计算机仿真技术,结合材料的物理性能参数,预测耐热钢在特定工作条件下的热裂倾向。
总的来说,对耐热钢的热裂倾向进行检测需要综合考虑材料的
组织结构、力学性能和工作条件等多个因素,采用多种手段和方法相互印证,以确保检测结果的准确性和可靠性。
耐热钢标准耐热钢是一种具有良好耐高温性能的特殊钢材,广泛应用于航空航天、能源、化工等领域。
本文将从耐热钢的定义、特性、分类、应用领域和发展趋势等方面进行详细介绍。
一、耐热钢的定义耐热钢是一种能够在高温环境下保持良好力学性能和抗氧化性能的特殊钢材。
它具有较高的耐高温稳定性、抗氧化性能和抗蠕变性能,能够在高温下保持较高的强度和硬度,不易软化和变形。
二、耐热钢的特性1. 耐高温稳定性:耐热钢在高温下能够保持较高的强度和硬度,不会发生明显的软化和变形。
2. 抗氧化性能:耐热钢表面形成一层致密的氧化膜,能够有效防止氧化反应,延缓材料的氧化速度。
3. 抗蠕变性能:耐热钢在高温下能够抵抗塑性变形和蠕变现象,保持较好的形状稳定性和尺寸精度。
4. 良好的加工性能:耐热钢具有较好的可塑性和可焊性,可以方便地进行热加工和焊接。
三、耐热钢的分类根据耐热钢的化学成分和性能特点,可以将其分为几个主要类别:1. 铁基耐热钢:主要由铁、铬、镍等元素组成,具有较高的耐高温稳定性和抗氧化性能。
2. 镍基耐热合金:主要由镍、铬、钼等元素组成,具有较高的耐高温稳定性、抗氧化性能和抗蠕变性能。
3. 钨基耐热合金:主要由钨、铼、铬等元素组成,具有极高的耐高温稳定性和抗氧化性能,广泛应用于高温环境中。
4. 铸造耐热钢:主要由铁、铬、镍等元素组成,具有较好的耐高温稳定性和抗氧化性能,适用于大型铸件的制造。
四、耐热钢的应用领域耐热钢广泛应用于航空航天、能源、化工等领域,主要包括以下几个方面:1. 航空航天领域:耐热钢用于制造航空发动机的涡轮叶片、涡轮盘、燃烧室等部件,以及航空航天器的隔热材料。
2. 能源领域:耐热钢用于制造火电站锅炉的超临界和超超临界锅炉管道和受热面,以及核电站的核反应堆压力容器和燃料元件。
3. 化工领域:耐热钢用于制造化工设备的反应器、分离器、石油裂化炉管道等,能够承受高温、高压和腐蚀介质的作用。
4. 其他领域:耐热钢还广泛应用于冶金、机械、汽车等领域,用于制造高温工作环境下的各种零部件和工具。
耐热钢总论1.耐热钢是指在高温下工作的钢材。
耐热钢的发展与电站、锅炉、燃气轮机、内燃机、航空发动机等各工业部门的技术进步密切相关。
由于各类机器、装置使用的温度和所承受的应力不同,以及所处环境各异,因此所采用的钢材种类也各不相同。
这里所谈的温度是个相对的概念。
最早在锅炉和加热炉中使用的材料是低碳钢,使用的温度一般在200℃左右,压力仅为0.8MPa。
直到现在使用的锅炉用低碳钢,如20g,使用温度也不超过450℃,工作压力不超过6MPa。
随着各类动力装置的使用温度不断提高,工作压力迅速增加,现代耐热钢的使用温度已高达700℃,使用的环境也变得更加复杂与苛刻。
现在,耐热钢的使用温度范围为200~1300℃,工作压力为几兆帕到几十兆帕,工作环境从单纯的氧化气氛,发展到硫化气氛、混合气氛以及熔盐和液金属等更复杂的环境。
为了适应各种工作条件不断发展的要求,耐热钢也在不断地发展。
从最早期的低碳钢、低合金钢,到成分复杂的、多元合金化的高合金耐热钢。
现按珠光体型低合金热强钢、马氏体型热强钢、阀门钢、铁素体型耐热钢、奥氏体型耐热钢、等分别介绍如下。
1)珠光体型低合金热强钢该种钢的代表:12Cr1MoV此种钢组织稳定性较好,当温度高达580℃时仍具有良好的热强性。
2)马氏体型热强钢该种钢的代表:Cr12型马氏体热强钢,有优良的综合力学性能、较好的热强性、耐蚀性及振动衰减性,广泛用于制造汽轮机叶片而形成独特的叶片钢系列,并广泛用作气缸密封环、高温螺栓、转子和锅炉过热器、在热器管、燃气轮机涡轮盘、叶片、压缩机及航空发动机压气机叶片、轮盘、水轮机叶片及宇航导弹部件等。
Cr12型耐热钢的开发与应用已有60多年历史,至少已有300余种牌号。
但其成分的差别不大,都是以Cr12钢为基础在添加钨、钼、钒、镍、铌、硼、氮、钛、钴等元素含量上做些变化。
3)阀门钢阀门钢是耐热钢的一个重要分支,该种钢的代表:21Cr-9Mn-4Ni-N钢(21-4N),与21Cr-12NiN、14Cr-14Ni2W-Mox相比,性能优越较经济,在汽油机排气阀门上迅速得到广泛应用。
在21-4N钢基础上添加硫改善切削性能形成了21-4NS。
添加铌、钼、钨和钒,提高了高温强度、疲劳强度和耐磨性,开发了21-4WNbN,X60CrMnMoVNbN2110钢。
4)铁素体型耐热钢在室温和使用温度条件下这类钢的组织为铁素体。
这类钢铬含量高于12%,不含镍,只含有少量的硅、钛、钼、铍等元素。
5)奥氏体型耐热钢该种钢的代表:18Cr-8Ni、25Cr-20Ni及Cr-Mn-N、Fe-Mn-Al等钢。
这类钢在高温下具有较高的热强性,及优异的抗氧化性。
一般制作用于600℃以上承受较高应力的部件,其抗氧化性温度可达850~1250℃。
这类钢基本上是和不锈钢同时发展起来的,有些钢同时就是优异的奥氏体型不锈钢。
我国在奥氏体型钢方面,除仿制和生产了大量国外耐热钢牌号外,多年来还开发了Cr-Mn-N、Cr-Mn-Ni-N、Cr-Ni-N及Fe-Al-Mn和Cr-Mn-Al-Si系耐热钢。
Cr18Mn12Si2N、Cr20Mn9Ni2Si2N及3Cr24Ni7SiNRe列入国家标准推广应用。
铸造耐热钢在耐热钢领域中占有相当大的比重。
20世纪70~80年代以来,由于石油化学工业的飞速发展,在大型合成氨及乙烯装置中采用了大量的高合金耐热铸钢,其使用温度可达1150℃,开发了一系列Fe-Cr-Ni 基耐热钢及耐热合金。
如4Cr25Ni35Co15W、4Cr25Ni35WNb、5Cr28Ni48W5等。
一些发达国家早在20世纪30年代就制定了耐热铸钢标准。
1987年,我国建立了第一个耐热铸钢国家标准。
6)沉淀硬化型耐热钢沉淀硬化型耐热钢按其组织可分成马氏体沉淀硬化耐热钢(如0Cr17Ni4Cu4Nb)、(半奥氏体-马氏体过滤型)沉淀硬化耐热钢(如0Cr17Ni7Al和0Cr15Ni7Mo2Al)和奥氏体沉淀硬化耐热钢(如0Cr15Ni25Ti2MoVB)等。
2、耐热钢的分类2.1按合金元素含量分类a)低碳钢:在此类钢中部含或很少含有其他合金元素,其碳含量一般不超过0.2%。
b)低合金耐热钢:在此类钢中都含有一种或几种合金元素,但含量不高,一般钢中所含合金元素的总量不超过5%,碳含量不超过0.2%.c)高合金耐热钢:在此类钢中合金元素多,合金元素含量一般在10%以上,甚至高达30%以上。
2.2按钢的特性分类a)抗氧化钢(或称耐热不起皮钢):此类钢在高温下(一般在550~1200℃)具有较好的抗氧化性能及抗高温腐蚀性能,并有一定的高温强度。
用于制造各类加热炉用零件和热交换器,制造热汽轮机的燃烧市、锅炉吊瓜、加热炉炉底板和辊道以及炉管等。
抗氧化性能是主要指标,部件本身不承受很大压力。
b)热强钢:在高温(通常在450~900℃)既能承受相当的附加应力又要具有优异的抗氧化、抗高温气体腐蚀能力,通常还要求承受周期性的可变赢利。
通常用作汽轮机、燃气轮机的转子和叶片,锅炉的过热器、高温下工作的螺栓和弹簧、内燃机的进排气阀、石油加氢反应器等。
2.3按钢的主要用途分类工业炉用耐热钢:除反应堆、电站锅炉、石化工业炉外,在冶金、机械、建材、轻工等工业中,广泛用作热交换器、加热炉管、反映罐等多种炉窑中的各种耐热部件,除采用板、管、棒等耐热钢变形材外,并采用大量的耐热钢铸件。
冶金厂的各种退火炉罩,可控气氛连续加热炉的马弗罐、辐射管、装料框架、链带等,多采用310(0Cr25Ni20)或3Cr24Ni7SiNRe、2Cr25Ni13钢等。
冶金厂连续式加热炉和热处理炉中大量的炉底辊和辐射管亦采用高合金耐热钢离心铸管,常用的牌号有0Cr18Ni9、00Cr18Ni9、1Cr18Ni9Ti、0Cr17Ni12Mo2、00Cr17Ni12Mo2、3Cr24Ni7SiNRe、0Cr23Ni13、1Cr20Ni14、Cr25Ni20Si2、00Cr10Ni20Mo6Cu6、4Cr25Ni35NbW、70CrMoVBRe、4Cr28Ni48W5Si2、3Cr26Ni4MnMoRe等。
在水泥工业中,湿法水泥窑预热带中的耐热钢链条,大型水泥窑蓖冷机用的篦子板,冷却机用的物料斗等,均使用了大量的耐热钢件,如3Cr24Ni7SiNRe、1Cr20Ni14、Cr25Ni20Si2等。
3、耐热钢的牌号表示方法中国耐热钢的牌号表示方法根据我国钢铁产品表示方法国家标准(GB/T221—2000)规定,产品牌号的命名采用汉语拼音字母、化学元素符号及阿拉伯数字相结合的方式表示。
汉语拼音字母用于表示产品名称、用途、特性和工艺方法。
耐热钢与不锈钢的牌号表示方法相同,一般采用规定的合金元素符号和阿拉伯数字表示。
通常在牌号的第一位用一位阿拉伯数字表示平均含碳量(以千分之几计);当平均含碳量不小于1.00%时,采用两位阿拉伯数字表示;当含碳量上限不大于0.03%时(超低碳或极低碳)以两位阿拉伯数字表示(以万分之几计)。
当含碳量上限小于0.1%时以“0”表示含碳量;当含碳量上限不大于0.03%且大于0.01%时(超低碳),以“00”表示含碳量;当含碳量上限不大于0.01%时(极低碳),以“01”表示含碳量。
合金元素平均含量小于1.50%时,牌号中仅标明元素符号,一般不标明含量;合金元素平均含量为1.50%~2.49%、2.50%~3.49%…22.50%~23.49%…时,相应地写成2、3…23…。
专门用途、工艺方法或易切削的耐热钢,在牌号前面冠以专用钢、专用工艺方法或易切削钢的符号。
例如:2Cr13:表示平均含碳量为0.2%的平均含铬量为13%的铬耐热钢;0Cr18Ni10Ti:表示含碳量低于0.1%但大于0.03%的平均含铬18%、含镍10%且含钛的低碳铬镍耐热钢;00Cr19Ni10:表示含碳量低于0.03%的平均含铬19%、含镍10%的超低碳铬镍钢;01Cr19Ni11:表示含碳量低于0.01%的平均含铬19%、含镍11%的极低碳铬镍钢;11Cr17:表示平均含碳量1.10%的平均含铬量为17%的高碳铬钢;4Cr10Si2Mo:表示平均含碳量为0.40%的平均含铬量为10%、平均含硅量为2%且含钼的铬硅钼钢。
珠光体型耐热钢的钢号表示方法,与合金结构钢相同,即前两位用阿拉伯数字表示平均含碳量(以万分之几计),后边为元素符号和表示合金元素平均含量的百分数。
耐热铸钢与一般耐热钢的牌号表示方法基本相同,只是在牌号前冠以“ZG”字母(“Z”、“G”分别为“铸”、“钢”汉语拼音的首位字母),以区别于各类变形钢。
例如:ZG1Cr18Ni9Ti是和1Cr18Ni9Ti成分相近的耐热铸钢。
4、耐热钢的基本性能4.1主要合金元素在耐热钢中的作用耐热钢中常见的合金元素有铬(Cr)、镍(Ni)、钼(Mo)、钨(W)、钒(V)、硅(Si)、铝(Al)、钛(Ti)、铌(Nb)、硼(B)、钴(Co)、锰(Mn)、碳(C)、氮(N)、稀土(Re)、铜(Cu)、铁(Fe)等。
磷和硫一般为有害的杂质元素。
铬、铝、硅和稀土元素能提高耐热钢的抗氧化性能。
铬、钼、钨、钒、钛、铌、钴、硼、稀土等能提高或改善耐热钢的热强性。
铁为耐热钢的基本元素。
镍和锰的作用主要是获得奥氏体组织。
下面分别介绍一下主要合金元素在耐热钢中的作用。
4.1.1铬是耐热钢中抗高温氧化和抗高温腐蚀的主要元素,并能提高耐热钢的热强性。
耐热钢的抗高温腐蚀性能与其含铬量有一定的关系。
因此常用的耐热钢的铬含量应不低于12%。
4.1.2镍是耐热钢中的重要合金元素之一。
为了使钢在室温下获得纯奥氏体组织,其中镍含量不低于25%。
但当钢中含有其他合金元素时,为获得纯奥氏体组织,镍含量可适当减少。
例如,当钢中含碳量0.1%含碳量为18%时,为了获得钢的纯奥氏体组织,含镍量为8%即可,这就是典型的18-8型奥氏体耐热不锈钢。
当钢中含有其他铁苏体形成元素时,为获得纯奥氏体组织,含镍量就要增加,如不增加镍含量,或降低镍含量,就会出现双向组织,或出现不稳定的奥氏体组织,冷加工时可能产生相变(奥氏体组织转变为马氏体组织)。
4.1.3钼为难熔金属,熔点高(2625℃)。
对提高耐热钢的热强性有较好的作用。
4.1.4钨为难熔金属,熔点高(3380℃)。
加钨可提高固溶体的热强性。
4.1.5钒为难溶金属,熔点高(1910℃)钒是提高铁素体型耐热钢的热强性的有效元素,钒也在奥氏体型耐热钢中获得应用,但凡含量一般在0.3%~0.5%之间。
4.1.6硅是耐热钢中抗高温腐蚀的有益元素,同时,在钢中加入硅也能改善它在室温条件下工作的性能。
耐热钢中的硅含量一般不超过2%。
4.1.7铝是耐热钢中抗氧化的重要合金元素,,耐热钢中的铝含量一般不超过6%。