《余角和补角》
- 格式:ppt
- 大小:785.50 KB
- 文档页数:19
2024年人教版初中七年级数学上册《余角和补角》精彩教案一、教学内容本节课选自2024年人教版初中七年级数学上册第四章《角的性质与分类》中的第4.3节“余角和补角”。
详细内容包括:1. 理解余角的定义及性质;2. 理解补角的定义及性质;3. 学会计算余角和补角;4. 掌握余角和补角的应用。
二、教学目标1. 知识与技能:让学生掌握余角和补角的定义,能够熟练计算余角和补角;2. 过程与方法:培养学生运用余角和补角的性质解决问题的能力;3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生的团队协作精神。
三、教学难点与重点1. 教学重点:余角和补角的定义及其性质;2. 教学难点:余角和补角的计算及应用。
四、教具与学具准备1. 教具:三角板、量角器;2. 学具:练习本、铅笔、直尺。
五、教学过程1. 实践情景引入(1)请两名同学到讲台前演示:用三角板拼出两个互补的角;(2)引导学生观察并思考:什么是余角?什么是补角?2. 新知讲解(1)余角的定义:如果两个角的和等于90°,则这两个角互为余角;(2)补角的定义:如果两个角的和等于180°,则这两个角互为补角;(3)余角和补角的性质:互为余角的两个角的和为90°,互为补角的两个角的和为180°。
3. 例题讲解(1)找出互为余角和互为补角的例子;(2)计算给定角度的余角和补角。
4. 随堂练习(1)判断题:找出互为余角和互为补角的角;(2)计算题:计算给定角度的余角和补角。
5. 小组讨论(1)讨论余角和补角的性质;(2)讨论如何运用余角和补角解决实际问题。
六、板书设计1. 余角和补角2. 定义:余角:两个角的和等于90°;补角:两个角的和等于180°。
3. 性质:互为余角的两个角的和为90°;互为补角的两个角的和为180°。
4. 例题及解答。
七、作业设计1. 作业题目(1)找出下列角的余角和补角:a. 30°b. 60°c. 120°(2)已知一个角的补角是80°,求这个角的度数。
《余角和补角》说课稿一、说教材1、说内容、地位和作用本节教材是新人教版标准实验教科书初中数学七年级第四章第3节教材的内容。
本节课主要学习余角、补角概念,余角、补角的性质,方位角.余角和补角是在学习了角的度量及角的比较与运算的基础上,对角的数量关系作进一步探讨,在后面学习对顶角相等及平行线的判定和性质时即将用到,并为今后证明角的相等提供一种依据和方法.另外教材在此已开始对学生提出“简单说理”的要求,为以后推理证明题作准备.对于方位角的知识,学生在根据题意画出方位角以及运用方位角的知识确定物体的方位是不熟悉的.方位角的知识在“解直角三角形”等内容中有广泛的应用,并且为今后学习平面直角坐标系等知识奠定基础.2、说目标在具体的现实情境中,认识一个角的余角和补角,掌握余角和补角的性质。
了解方位角,能确定具体物体的方位。
经历观察、操作、推理、交流等活动,发展学生的空间观念,培养学生的推理能力和表达能力。
体验数学知识的发生、发展过程,敢于面对数学活动中的困难,建立学好数学的自信心。
3、说教材的重点和难点重点:余角和补角的概念和性质难点:余角、补角性质的综合运用。
二、学情分析对七年级学生而言,他们对新鲜事物特别有兴趣。
因此,我在教学过程中创设生动活泼,直观形象,贴近他们生活的问题情境,会引起学生的极大关注,学生能够敢想、敢说、敢做,动手操作,亲自实践。
我在这里为学生提供充足的阳光和适宜的土壤。
而且,在本节课中我采用了“开放·探索”式教学模式进行教学,充分利用多媒体,化静为动,使学生始终处于主动探索问题的积极状态中。
同时,我们也必须承认学生之间的个体差异,对学有余力的学生有拔高拓展的机会,对学困生也要有一定的展示平台,在难点的突破上要多动脑筋,让他们最大程度的参与其中。
三、说教法与学法、教学手段1、教法:针对初一学生的年龄特点和心理特征,以及他们的知识水平,采用启发式、发现法教学等教学方法,让学生始终处于主动学习的状态,课堂上教师起主导作用,让学生有充分的思考机会,使课堂气氛活泼,有新鲜感。
《余角和补角》知识解析课标要求:1. 理解余角、补角、互余、互补等概念,在具体的现实情境中,认识一个角的余角与补角。
理解余角(补角)与互余(互补)的区别和联系,会求已知角的余角或补角.2.理解余角(补角)的性质,并能用它解决相关问题。
会用方程的思想方法求有关角的度数.3.理解互余(及互补)两角的等式表示方法,初步掌握图形语言与符号语言之间的相互转化.知识结构:内容解析:本节课主要学习余角、补角概念,余角、补角的性质,方位角. 余角和补角是在学习了角的度量及角的比较与运算的基础上,对角的数量关系作进一步探讨,在后面学习对顶角相等及平行线的判定和性质时即将用到,并为今后证明角的相等提供一种依据和方法.另外教材在此已开始对学生提出“简单说理”的要求,为以后推理证明题作准备.方位角的知识学生在小学就有所了解,但根据题意画出方位角以及运用方位角的知识确定点的位置是学生不熟悉的.方位角的知识在“解直角三角形”等内容有广泛的应用,并且为今后学习平面直角坐标系、极坐标等知识奠定基础.教学重点:1. 理解余角、补角的概念,会求已知角的余角或补角.2. 理解余角(补角)的性质,会用性质及建立方程的思想方法求有关角的度数. 教学难点:1.理解余角(补角)的性质,会用性质及建立方程的思想方法求有关角的度数.2. 理解互余(及互补)两角的等式表示方法.教法导引:现代教学论认为数学应加强学生的数学活动,如果能让学生在“做数学”的过程中获得知识和技能,掌握基本数学思想和规律,那将是课堂教学中最理想的境界,也是新课程改革的一个重要目标。
根据以上认识,我的教学思路是:老师的“教”体现在创设情境,激发兴趣,组织探索,引导发现。
学生的“学”体现在操作讨论,探索发现,归纳结论。
另外针对发展学生的逻辑推理能力,教学时注重让学生发表自己的见解,引导学生用数学语言表达自己的思考过程。
本节课主要采用“教师创设问题情境—学生自主探索与小组合作交流—概括明晰”的教学思路,把探索知识的主动权完全交给学生.通过问题情境的设置,激发学生的学习兴趣,营造师生间民主、和谐的学习氛围和每个学生平等参与学习的机会.这种合作学习的方式,使得全体学生都能在横向交流中各尽所能,取长补短,各有所获,共同发展.在教学中,要关注概念的实际背景与形成过程,采用直观导入的方法,借助直观形象,让学生能够理解概念并初步学会应用.并给学生提供探索和交流的空间,使数学活动不是单纯地依赖、模仿与记忆,而是一个生动活泼、积极主动和富有个性的过程,围绕本节课所学的知识,设置有现实意义的具有挑战性的问题,激发学生积极思考,引导学生自主探索与合作交流,既能在探索中获取知识,又能不断丰富数学活动的经验。
《余角、补角》讲义一、引入在我们的日常生活和数学学习中,角是一个非常常见且重要的概念。
今天,我们要来深入了解一下角的两种特殊关系:余角和补角。
二、什么是余角如果两个角的和是直角(90°),那么称这两个角“互为余角”,简称“互余”。
比如说,一个角是 30°,那么它的余角就是 60°,因为 30°+ 60°=90°。
余角的性质很有趣。
首先,同角的余角相等。
什么意思呢?就是如果角 A 和角 B 互余,角 A 和角 C 也互余,那么角 B 就等于角 C。
其次,等角的余角相等。
比如角 D 等于角 E,角 D 的余角是角 F,角 E 的余角是角 G,那么角 F 就等于角 G。
我们来看一个例子:已知∠1 = 25°,∠2 是∠1 的余角,求∠2 的度数。
因为∠1 和∠2 互余,所以∠2 = 90°∠1 = 90° 25°= 65°。
三、什么是补角如果两个角的和是平角(180°),那么称这两个角“互为补角”,简称“互补”。
例如,一个角是 120°,那么它的补角就是 60°,因为 120°+ 60°=180°。
补角也有类似的性质。
同角的补角相等,等角的补角相等。
举个例子:若∠3 = 50°,∠4 是∠3 的补角,求∠4 的度数。
因为∠3 和∠4 互补,所以∠4 = 180°∠3 = 180° 50°= 130°。
四、余角和补角的应用在实际生活中,余角和补角有很多应用。
比如在建筑设计中,工程师需要考虑角度的关系,确保结构的稳定性。
在测量中,也会用到余角和补角的知识来计算角度。
在数学题目中,常常会出现这样的问题:一个角的补角比它的余角大多少度?我们来计算一下。
设这个角的度数为 x°,它的余角是(90 x)°,它的补角是(180 x)°。
《余角和补角》知识清单一、余角的定义如果两个角的和是直角(90°),那么称这两个角“互为余角”,简称“互余”。
其中一个角是另一个角的余角。
例如,若∠A +∠B = 90°,则称∠A 与∠B 互余,∠A 是∠B 的余角,∠B 也是∠A 的余角。
二、补角的定义如果两个角的和是平角(180°),那么称这两个角“互为补角”,简称“互补”。
其中一个角是另一个角的补角。
比如,若∠C +∠D = 180°,则∠C 与∠D 互补,∠C 是∠D 的补角,∠D 也是∠C 的补角。
三、余角和补角的性质1、同角的余角相等比如,∠A 的余角是∠B,∠A 的余角还有∠C,那么∠B =∠C。
这是因为∠A +∠B = 90°,∠A +∠C = 90°,所以∠B = 90°∠A,∠C = 90°∠A,从而∠B =∠C。
2、等角的余角相等若∠E =∠F,∠E 的余角是∠G,∠F 的余角是∠H,那么∠G =∠H。
因为∠E +∠G = 90°,∠F +∠H = 90°,又因为∠E =∠F,所以 90°∠E = 90°∠F,即∠G =∠H。
3、同角的补角相等比如,∠K 的补角是∠L,∠K 的补角还有∠M,那么∠L =∠M。
由于∠K +∠L = 180°,∠K +∠M = 180°,所以∠L = 180°∠K,∠M = 180°∠K,进而∠L =∠M。
4、等角的补角相等若∠N =∠P,∠N 的补角是∠Q,∠P 的补角是∠R,那么∠Q =∠R。
因为∠N +∠Q = 180°,∠P +∠R = 180°,且∠N =∠P,所以180°∠N = 180°∠P,即∠Q =∠R。
四、余角和补角的计算1、已知一个角求它的余角如果已知一个角的度数为α,那么它的余角的度数就是90° α。
《余角和补角》优质教案精品一、教学内容1. 余角的定义与性质:理解余角的定义,掌握余角的性质,能够运用余角进行简单的计算。
2. 补角的定义与性质:理解补角的定义,掌握补角的性质,能够运用补角进行简单的计算。
二、教学目标1. 知识目标:使学生掌握余角和补角的概念,理解它们之间的区别与联系,并能够运用这些知识解决实际问题。
2. 技能目标:培养学生的逻辑思维能力和解决问题的能力,提高他们在实际情境中运用角度概念的能力。
3. 情感目标:激发学生对数学学科的兴趣,培养他们的合作意识和探究精神。
三、教学难点与重点1. 教学难点:理解并区分余角和补角的概念,掌握它们的基本性质。
2. 教学重点:运用余角和补角进行计算,解决实际问题。
四、教具与学具准备1. 教具:三角板、量角器、多媒体课件。
2. 学具:练习本、三角板、量角器。
五、教学过程1. 实践情景引入利用三角板展示一个直角三角形,引导学生观察并提问:直角三角形的两个锐角之间有什么关系?2. 新课导入根据学生的回答,引出余角和补角的概念,并进行讲解。
3. 例题讲解选取一道例题,讲解如何求两个角的余角和补角,以及如何利用余角和补角进行计算。
4. 随堂练习学生独立完成练习题,巩固所学知识。
5. 课堂小结六、板书设计1. 余角和补角的定义2. 余角和补角的性质3. 例题及解答过程4. 课堂练习题目七、作业设计1. 作业题目:(1)求出下列各角的余角和补角:30°、45°、60°、90°。
(2)已知一个角的度数,求它的余角和补角,并解释它们之间的关系。
2. 答案:(1)30°的余角:60°,补角:150°;45°的余角:45°,补角:135°;60°的余角:30°,补角:120°;90°的余角:0°,补角:90°。