高中数学必修4《角的概念的推广》
- 格式:ppt
- 大小:1.56 MB
- 文档页数:35
人教B版高中数学教科书必修4《角的概念的推广》教学设计【教材内容和学生情况分析】本节主要介绍推广角的概念,引入正角、负角、零角的定义,象限角的概念,终边相同的角的表示方法。
树立运动变化的观点,理解静是相对的,动是绝对的,并由此深刻理解推广后的角的概念。
教学方法可以选为讨论法,通过实际问题,使角的推广变得更为必要,如螺丝扳手紧固螺丝、时针与分针、车轮的旋转等等,都能形成角的概念,给学生以直观的印象,形成正角、负角、零角的概念,突出角的概念的理解与掌握。
通过具体问题,让学生从不同角度作答,理解终边相同的角的概念,并给以表示,从特殊到一般,归纳出终边相同的角的表示方法,达到突破难点之目的。
【教学目标】1.体会任意角的概念的形成过程;知道象限角的概念;能初步判断出一个角所在的象限。
2. 通过布置课前任务,培养学生搜集、处理信息的能力;通过教学,培养学生的观察分析能力;通过动手作图,让学生体会数形结合的思想,提高学生的动手能力;3.通过生活实例的应用,学生感悟数学的在生活中的广泛应用性;在任意角的相关概念形成过程中,培养学生用运动变化的观点来审视事物;【教学重点、难点】教学重点:理解并掌握正角负角零角的定义,掌握终边相同的角的表示方法。
教学难点:终边相同的角的表示。
【教学过程】一、问题情境(多媒体):1.师:回忆:初中学过的角是如何定义的?生:展示课前预习结果。
共同复习初中角的定义:有公共端点的两条射线所围成的图形。
师:这种概念的优点是形象、直观、容易理解,角的范围是0°≤α≤360°,但其仅从图形的形状来定义角,弊端在于“狭隘”。
设计意图:检测学生课前自学情况,巩固初中所学的角的知识。
师:初中学过哪些角?它们的大小、范围是多少?生:共同回答。
二、导入新课(多媒体):观看动画,动画中有角产生吗?这些角还是0-360°?师:生活中是否很多实例会不在范围0°≤α≤360°内呢?生:观看动画。
(完整word版)高中数学三角函数基础知识点及答案(2),推举文档高中数学三角函数基础知识点及答案1、角的概念的推广:平面内一条射线绕着端点从一具位置旋转到另一具位置所的图形。
按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一具零角。
射线的起始位置称为始边,终止位置称为终边。
2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就讲那个角是第几象限的角。
假如角的终边在坐标轴上,就以为那个角别属于任何象限。
3. 终边相同的角的表示:(1)α终边与θ终边相同(α的终边在θ终边所在射线上)?2()k kαθπ=+∈Z ,注意:相等的角的终边一定相同,终边相同的角别一定相等.如与角ο1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。
弧度:一周的弧度数为2πr/r=2π,360°角=2π弧度,所以,1弧度约为57.3°,即57°17'44.806'',1°为π/180弧度,近似值为0.01745弧度,周角为2π弧度,平角(即180°角)为π弧度,直角为π/2弧度。
(答:25-o;536π-)(2)α终边与θ终边共线(α的终边在θ终边所在直线上) ?()k kαθπ=+∈Z . (3)α终边与θ终边对于x 轴对称?2()k k αθπ=-+∈Z . (4)α终边与θ终边对于y 轴对称?2()k k απθπ=-+∈Z . (5)α终边与θ终边对于原点对称?2()k k απθπ=++∈Z .(6)α终边在x 轴上的角可表示为:,k k Z απ=∈;α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2k k Z πα=∈.如α的终边与6π的终边对于直线x y =对称,则α=____________。
《角的概念推广》学历案一、学习主题角的概念推广二、学习目标1、理解角的概念推广的必要性,掌握正角、负角和零角的定义。
2、掌握终边相同角的表示方法,能熟练进行角的终边相同的判断与应用。
3、能够在平面直角坐标系中准确表示角,并理解角的象限分布。
三、学习资源教材、相关数学网站、数学教学视频四、学习过程(一)知识引入在日常生活中,我们经常会遇到一些与角有关的现象。
比如,钟表的指针旋转、车轮的转动等。
我们之前所学的角的范围是 0°到 360°,但在这些实际情况中,角的大小往往会超过这个范围。
这就需要我们对角的概念进行推广,以更好地描述和解决实际问题。
(二)正角、负角和零角正角:按逆时针方向旋转形成的角。
负角:按顺时针方向旋转形成的角。
零角:一条射线没有作任何旋转,称它形成了一个零角。
2、示例钟表的时针从 12 点走到 3 点,形成的角为 90°,是正角。
时针从 12 点走到 9 点,形成的角为-270°,是负角。
(三)终边相同角1、定义与角α终边相同的角(包括角α在内),可表示为:β =α +k·360°,k∈Z。
2、应用已知一个角,求与其终边相同的角。
确定角所在的象限。
例如,角α = 30°,则与其终边相同的角可以表示为β = 30°+k·360°,k∈Z。
当 k = 1 时,β = 390°;当 k =-1 时,β =-330°。
(四)角在平面直角坐标系中的表示角的终边在第几象限,就称这个角是第几象限角。
例如,30°角的终边在第一象限,所以 30°是第一象限角;120°角的终边在第二象限,所以 120°是第二象限角。
2、轴线角角的终边在坐标轴上的角称为轴线角。
例如,90°角的终边在 y 轴正半轴上,所以 90°是轴线角。
(五)例题讲解例 1:已知角α =-120°,求与α终边相同的角的集合,并在 0°到360°范围内找出与α终边相同的角。
《角的概念的推广》说课稿尊敬的各位评委老师:大家好!今天我说课的题目是《角的概念的推广》。
接下来,我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“角的概念的推广”是高中数学必修 4 第一章“三角函数”中的重要内容。
在此之前,学生已经学习了角的基本概念,如锐角、直角和钝角等。
而本节课将角的概念进行推广,引入正角、负角和零角的概念,为后续学习三角函数的周期性、诱导公式等知识奠定了基础。
从教材的编排来看,本节课通过实际生活中的例子,如钟表指针的转动、车轮的旋转等,引导学生观察和思考角的变化,从而自然地引出角的概念的推广。
这样的编排既符合学生的认知规律,又能激发学生的学习兴趣。
二、学情分析授课对象是高一年级的学生,他们在初中阶段已经对角有了初步的认识,但对于角的概念的推广可能会感到抽象和难以理解。
然而,这个阶段的学生思维活跃,具有较强的好奇心和求知欲,已经具备了一定的观察、分析和抽象概括能力。
在教学过程中,要充分利用学生已有的知识和经验,通过实例引导、问题驱动等方式,帮助学生逐步理解和掌握角的概念的推广。
三、教学目标1、知识与技能目标(1)理解正角、负角和零角的概念,掌握角的终边相同的角的表示方法。
(2)能够正确地画出给定角的终边,会进行角的度量与换算。
2、过程与方法目标(1)通过观察实例、分析问题,培养学生的抽象思维能力和逻辑推理能力。
(2)经历角的概念推广的过程,体会从特殊到一般、从具体到抽象的数学思维方法。
3、情感态度与价值观目标(1)让学生感受数学与实际生活的紧密联系,激发学生学习数学的兴趣。
(2)培养学生勇于探索、敢于创新的精神,提高学生的数学素养。
四、教学重难点1、教学重点(1)正角、负角和零角的概念。
(2)终边相同的角的表示方法。
2、教学难点理解角的概念的推广,掌握终边相同的角的集合的表示。
五、教法与学法1、教法(1)启发式教学法:通过设置问题,引导学生思考和探索,激发学生的学习积极性和主动性。