预应力混凝土空心板裂缝分析与防治
- 格式:doc
- 大小:25.00 KB
- 文档页数:3
桥梁工程预应力空心板裂缝原因分析及控制预应力混凝土空心板是桥梁的主要承重构件,对整个工程的质量至关重要。
混凝土表面出现裂缝是桥梁工程的常见问题之一。
裂缝分宏观裂缝和微观裂缝两类,混凝土的微观裂缝为混凝土所固有,我们通常所指的裂缝为肉眼可见的宏观裂缝,其宽度在0.05m以上。
表面裂缝不影响空心板的正常使用,但可使混凝土顶面抗拉强度降低,使用中会增加混凝土的渗透性,并使混凝土暴露表面增大,易使混凝土早期老化,降低混凝土的强度,从而影响其耐久性。
本文分析裂缝的成因并提出控制措施一、预应力空心板裂缝成因分析(一)混凝土材料本身的性质1、收缩裂缝混凝土的干燥过程是由表面逐步扩展到内部的,在混凝土内呈现含水梯度,因此产生表面收缩大,内部收缩小的不均匀收缩,致使表面混凝土承受拉力,内部混凝土承受压力。
当表层混凝土所产生的拉力超过其抗拉强度时,便产生收缩裂缝。
2、温度裂缝混凝土受水泥水化放热、阳光照射、夜间降温等因素影响而出现冷热变化时,将发生收缩和膨胀,产生温度应力,温度应力超过混凝土抗拉强度时,即产生裂缝。
特别是由于水化放热作用,使混凝土内部与外表面温差过大,这时内部混凝土受压应力,表面混凝土受拉应力。
由于混凝土抗压强度远大于抗拉强度,表面拉应力可能先到达并超过混凝土抗拉强度,而产生间距大致相等的直线裂缝(称温差裂缝)。
3、徐变影响长时间受力作用下,混凝土徐变逐渐增加。
较大的徐变给构造带来的附加被动内力,使板或箱粱构件弯矩产生重分布,增大的弯矩增加了板的剪应力,因此造成了板裂缝出现。
(二)设计方面的因素1、设计计算阶段,构造计算时不计算或部分漏算;计算模型不合理;构造受力假设与实际受力不符:荷载少算或漏算;内力与配筋计算错误;构造安全系数不够:构造设计时不考虑施工的可能性:设计断面缺陷;钢筋设置偏少或布置错误等都有可能出现板中混凝土实际应力超过混凝土抗拉强度而导致开裂。
2、混凝土配合比不合理。
水泥用量过大使混凝土凝结收缩量大,容易造成表面产生裂缝。
预应力先张法空心板裂缝产生原因及处理措施摘要:预应力混凝土梁板是桥梁工程目前经常采用的结构形式,具有设计简便;施工方便快捷、易于工厂化生产的特点。
但由于混凝土自身的特点,经常会产生各种各样的裂缝,严重的影响了梁板的使用和寿命。
本文通过对梁板裂缝原因的分析,提出了相应的解决方法,为今后的梁板施工提供经验。
关键词:预应力混凝土梁板裂缝1 概述随着交通基础建设得到迅猛发展,兴建了大量的预应力混凝土梁板的桥梁。
在桥梁建造和使用过程中,出现裂缝而影响工程质量事件时有发生。
混凝土开裂可以说是“常发病”和“多发病”。
其实,如果采取相应的设计和施工措施,很多裂缝是可以克服和控制的。
为了进一步加强对混凝土桥梁裂缝的认识,尽量避免工程中出现危害较大的裂缝,本文尽可能对混凝土桥梁裂缝的种类和产生的原因作剖析,并针对问题提出了相应的处理措施,以方便施工找出控制裂缝的可行办法,达到防范于未然的目的。
2 混凝土桥梁裂缝种类、成因实际上,混凝土结构裂缝的成因复杂而繁多,并且多种因素相互影响,但每一条裂缝均有其产生的一种或几种主要原因。
混凝土梁板裂缝的种类,就其产生的原因,大致可划分如下几种:2.1荷载引起的裂缝混凝土桥梁在常规静、动荷载及次应力下产生的裂缝称荷载裂缝,归纳起来主要有直接应力裂缝、次应力裂缝两种。
2.1.1直接应力裂缝是指外荷载引起的直接应力产生的裂缝直接应力裂缝产生的原因有:2.1.1.1设计阶段,结构计算时出现漏误;计算模型不合理;结构受力假设与实际受力不符;内力与配筋计算错误;结构安全系数不够。
结构设计时对施工的可能性考虑不周;设计断面不足;预应力钢束及钢筋设置偏少或布置错误;结构刚度不足;构造处理不当;设计图纸交代不清等。
本合同预应力梁全部采用主筋直线形布置,其主要缺点是支点附近无法平衡的张拉负弯矩会在梁顶出现过高的拉应力,甚至遭致严重开裂。
2.1.1.2施工阶段,不了解预制结构受力特点,随意堆放、起吊、运输、安装;不按设计图纸施工,擅自更改结构施工顺序,改变结构受力模式等。
浅析预应力混凝土空心板裂纹的成因及预防措施实用1份浅析预应力混凝土空心板裂纹的成因及预防措施 1某工程施工中,应用了预应力混凝土,但是施工后在合同某标段中出现了20m空心板的竖向裂缝,该裂缝受到了技术部门的关注,针对其裂缝的出现技术人员进行了仔细的研究调查,尤其针对其与之过程进行了分析,并结合相关资料以及工艺流程,找出裂缝的出现原因,并针对性的提出了防治措施,使得空心板的裂缝现象得到有效控制,同时也对相似工程的空心板结构裂缝提供了防治参考资料。
2 裂缝的出现在完成浇筑以及拆模后,空心板竖向便出现了长度范围大于50mm小于150mm宽度大于0.02mm小于0.08mm的裂缝,且裂缝主要沿着连接筋方向发展;另外顶部也同样出现长度大于50mm,小于100mm 的裂缝,且裂缝宽度相对较宽,(0.02mm 至0.12mm)。
上述裂缝深度小于5mm,因而可以判定可能为温度裂缝或者收缩裂缝。
这两种裂缝不会对空心板的使用造成影响,但是考虑预应力钢绞线放张后,由于抗拉强度的降低,混泥土结构中的裂缝就有可能继续发展扩大,所以,就需要仔细对裂缝的出现因素进行研究,并对其针对性的进行防治。
在完成浇筑后的24 小时内,裂缝便会产生,此时混泥土结构最为敏感极易受到外界伊苏的影响而发生裂缝(沉陷、收缩、震动)。
一旦发生早期裂缝,那么混凝土结构便会遭到破坏,渗透性便会加大,使混凝土暴露于易损伤环境的表面增加,其耐久性以及使用寿命便会受到影响。
3 原因分析针对空心板出现裂缝的各个因素,文章对其进行了详细的分析,为预应力混凝土空心板防治裂缝提出了理论基础。
3.1 原材料该工程中使用南通海螺P.O42.5 水泥,经过检验该型号水泥符合施工标准要求。
在施工中523kg/m3高强混凝土由于其水泥用量大多在(400~600kg/m3),该用量超出了普通混凝土中水泥的用量,约为1.5 至2倍。
这样的配比使该种混泥土在凝结过程中收缩体积便会高于其他混凝土,因而更容易出现收缩裂缝。
桥梁工程预应力混凝土空心板质量通病及防治措施一、空心板上部病害1、铰缝损伤:铰缝损伤主要表现为铰缝混凝土松散、破碎、剥落以及铰缝构造钢筋断裂等,铰缝损伤到一定程度,引起对应位置的桥面铺装层出现纵向裂缝。
2、梁体结构损伤:主要表现为板底出现纵横向裂缝,通常中梁损伤较大,边梁损伤较小。
3、面铺装破损:铺装层破损现象非常普遍,主要有桥面破损、坑槽、以及明显的横向裂缝和纵向裂缝等。
4、损伤:主要表现为表层混凝土发生碳化、钢筋锈蚀、外露、以及混凝土保护层胀裂或剥落等。
5、支座其他损伤:空心板支座脱空、支座剪切变形等。
(二)空心板病害原因分析空心板梁的病害不是独立的,而是相互影响、相互制约的。
譬如最常见的病害支座脱空危害较大,支座脱空势必造成其他支座反力增大,超过支座承载能力,易引起支座本身的损坏;支座脱空会大大增加板梁横向弯矩,易引起板梁板底纵裂;支座脱空对铰缝的工作状况会产生不利影响,会加剧铰缝损坏,进而会形成单板受力,最终造成对板梁本身的损伤。
1、设计原因对铰缝的验算理论不完善,原设计中采用铰接板理论计算铰缝剪力较实际作用偏小忽略了铰缝与预制空心板接触面之间的粘结作用。
空心板铰缝破损引起的“单板受力”问题是空心板简支梁桥最常见同时也是最致命的病害。
在我国,目前还没有明确规定铰缝如何进行抗剪计算,在以往的计算中,通常是以将铰缝混凝土看作圬工材料,按圬工结构(《圬工规范》)直接受剪来计算铰缝抗剪强度。
由于《圬工规范》未考虑铰缝属于先后浇混凝土粘结,导致铰缝抗剪承载力计算值往往远远大于其设计值。
2、施工原因铰缝浅而窄,不利于铰缝混凝土的振捣,导致混凝土不密实,强度达不到要求。
板梁铰缝接触面混凝土未进行粗糙处理,或凿毛后没有清除松动混凝土块,从而降低了预制板与铰缝混凝土间的粘结强度。
铰缝混凝土浇注前,应将梁体侧面湿润,否则新老混凝土接触面粘结性能较差。
支座安装不平导致支座脱空,形成“三条腿”现象。
车辆通过时造成空心板的振动,使铰接缝混凝土处于很不利的受力状态,久而久之,铰接缝混凝土逐渐破碎脱落。
预应力空心板裂缝的分析和防治预应力混凝土空心板在施工过程中,易产生裂缝。
影响因素有:温度应力,气囊变形,施工工艺等。
加强施工过程主要工序的管理,特别是混凝土的养护对消除混凝土的表面裂缝尤为关键。
标签:空心板;裂缝;分析;处理;防治1 工程概况本工程桥梁与河道斜交40,5。
,采用两跨2m×16m简支梁结构,上部结构采用先张法预应力空心板梁,16m梁高均为80cm,梁宽均为124cm,梁间缝宽1cm,结构简支。
全桥由108片中板和16片边板组成,边板悬挑均为25cm。
预应力钢筋采用φ15.2(1×7)高强低松弛钢铰线,其标准强度f=1860MPa。
预制空心板混凝土强度达到设计强度的85%以上(且龄期不小于7d)方可逐步放松预应力钢铰线。
2 裂缝特征本工程所有空心板均由专业预制厂进行预制。
在前期预制的空心板中,在混凝土浇筑完成拆模后,发现有6片空心板出现裂缝的缺陷,通过现场调查,裂缝产生在沿连接筋竖向方向和空心板顶面。
采用多功能表面裂缝宽度观测记录仪以及采用灌墨查看经验方法,观测得出沿连接筋竖向产生长度50~160mm,宽度为0.05~0.08mm的裂缝,板顶面出现80~200mm,宽度为0.8~0.15mm的裂缝,裂缝深度在0~10mm之间。
3 裂缝原因分析针对这几片空心板出现裂缝的情况,项目部非常重视,技术人员对预制厂预制的全过程进行了调查分析,查阅了有关试验资料,对施工工艺做了详细了解,根据出现裂缝的几种可能性进行分析,总结出出现裂缝的原因。
混凝土在硬化后和使用过程中,受各种因素影响而产生变形,主要有化学收缩、干湿变形、温度变形及荷载作用下的变形等。
这些变形是使混凝土产生裂缝的重要原因之一,直接影响混凝土的强度和耐久性。
首先,可以排除掉荷载作用下的变形这个原因。
混凝土裂缝是在浇筑后第一个24h内产生,因此,外荷载不是该批空心板产生裂缝的原因。
由于裂缝在浇筑后24h内产生,这时混凝土最敏感产生震动裂缝、温度裂缝、收缩裂缝和沉陷裂缝。
先张法预应力混凝土板梁顶面裂缝的分析与防治1 概述沈阳四环快速路新建工程第二合同段桥梁工程主体结构位于于洪区平罗镇上三家村,沈彰高速公路东侧,新蔡线北侧。
13m跨径先张预应力空心板梁共计160片,均由项目部预制板梁梁场生产。
13m预应力空心板是桥梁工程的主要承力结构,因此保证混凝土的预制质量至关重要,我段施工的13m先张法预应力空心板梁施工的相关参数如下:结构类型:跨径13m预应力混凝土先张空心板梁混凝土设计强度:40mpa钢绞线类型:φ12.7/1860mp混凝土配合比:水泥:砂:碎石:水:外加剂=426:685:1167:162:4.26水灰比:0.38砂率:37%水泥:采用辽阳天瑞水泥有限公司生产的《天瑞》p·o52.5水泥。
碎石:采用辽阳罗大台镇沙浒生产的(5-20)mm碎石(掺和比例:5-10mm 30%;10-20mm 70%)砂:采用开源清河生产的中砂水:饮用水外加剂:北京恒峰永信科技发展有限公司生产的bhf-9聚羧酸高效减水剂,掺量1.00%2 裂缝的产生13米首件预制的个别空心板梁在混凝土浇筑完成拆模后,在顶面沿拉毛纹路及箍筋横向产生长度30~50mm,宽度为0.1~0.3mm的裂缝,顶面纵向也出现30~50mm,宽度为0.1~0.2mm的裂缝。
用红色墨水滴灌标注后,将混凝土裂缝凿开,可以发现裂缝深度在1~3mm 之间,因此,可以初步判定为温度裂缝或收缩裂缝,这对空心板的受力及使用并不构成影响,但当预应力钢绞线放张后,位于混凝土顶部的抗拉强度会降低、相应的张力会增加,从而会导致裂缝宽度、长度和深度都会有增加的可能,这一情况必须要加以考虑,然后综合分析裂缝产生的原因,并提出改进措施。
混凝土早期裂缝一旦发生,其渗透性能会发生改变,其暴露于易损伤环境的表面积也随之增大,加速混凝土的老化,会严重降低混凝土的强度;裂缝的产生使混凝土渗水、渗液性增大,易造成其内部受力筋的腐蚀,影响到混凝土的耐久性,使其寿命缩短。
预应力混凝土空心板裂缝分析与防治
预应力混凝土空心板裂缝分析与防治
宁夏公路工程局刘中元
[摘要]预应力混凝土空心板在施工过程中,易产生裂缝。
影响因素有:温度应力,原材料质量,施工工艺等。
加强施工过程主要工序的管理,特别是混凝土的养护对消除混凝土的表面裂缝尤为关键。
关键词:预应力,混凝土,空心板,裂缝,防治
在中郝高速公路施工中,某合同段出现了20米预应力混凝土空心板竖向裂缝的现象,此事引起了技术人员的高度重视,对预制厂预制的全过程进行了调查分析,查阅了有关试验资料,对施工工艺做了详细了解,找出了产生裂缝的原因,提出了改进措施,使预应力混凝土空心板表面裂缝得到了控制,有效地防止了混凝土表面裂缝的再次发生。
一、概述
预应力空心板是桥梁工程的主要受力结构,保证混凝土的预制质量至关重要,该预制厂预制空心板的数量600片,均为先张法预应力混凝土空心板,下面是20米预应力空心板施工的有关参数。
结构类型:跨径20m预应力混凝土空心板。
混凝土设计强度:50MPa
混凝土配合比:水泥∶砂∶碎石∶水∶减水剂=1∶1.3∶2.3∶0.3∶0.01
水泥用量:500kg/m3
水泥类型:赛马P.O42.5#R
砂:中宁小洪沟料场。
碎石:中宁清水河石料场。
水:机井水。
减水剂:湛江产FDN-5型高效减水剂。
二、裂缝的产生
空心板在混凝土浇筑完成拆模后,沿连接筋竖向产生长度50~150mm,宽度为0.02~0.08mm的裂缝,顶面也出现50~100mm,宽度为0.02~0.12mm的裂缝。
凿开混凝土裂缝发现,裂缝深度在0~5 mm之间,初步判定为收缩裂缝或温度裂缝。
不影响空心板的正常使用,但考虑预应力钢绞线放张后,有使混凝土顶面抗拉强度降低,致使裂缝长度、宽度和深度增长的可能,为此,分析裂缝产生的原因和改进措施是完全必要的。
混凝土裂缝在浇筑后第一个24h内产生,这时混凝土最敏感产生震动裂缝、收缩裂缝和沉陷裂缝。
早期裂缝一旦发生,会增加混凝土的渗透性,并使混凝土暴露于易损伤环境的表面增加,这使混凝土早期老化, 裂缝的产生使混凝土渗水性增大,严重降低混凝土的强度,从而影响其耐久性。
并缩短其使用寿命。
三、裂缝产生的原因分析
鉴于预应力混凝土空心板产生裂缝,技术人员立即对施工中的各个环节进行了分析。
1、原材料因素
水泥采用赛马P.O 42.5R,经检验符合规范要求,水泥用量:500kg/m3.
高强混凝土由于其水泥用量大多在(450~600kg/m3),是普通混凝土的1.5~2倍。
这样在混凝土生成过程中由于水泥水化而引起的体积收缩即自缩就大于普通混凝
土,出现收缩裂缝的机率也大于普通混凝土。
高强混凝土因采用高标号水泥且用量大,这样在混凝土硬化过程中,水化放热量大,将加大混凝土的最高温升,从而使混凝土的温度收缩应力加大。
在叠加其他因素的情况下,很有可能导致温度收缩裂缝。
由于高强混凝土中水泥石含量是普通混凝土的1.5倍,在硬化早期由于水分蒸发引起的干缩也将大于普通混凝土。
碎石采用小洪沟料场碎石,级配符合规范要求,压碎值8.3%<12%(规范指标),含泥量0.7%不符合规范要求。
砂采用小洪沟中砂,含泥量4.2%>3%,不符合规范要求,细度模数Mx=2.7,级配符合规范要求。
水采用机井水,属饮用水。
减水剂为湛江生产的FDN-5,符合规范要求。
碎石和砂含泥量超标,对混凝土表面裂缝有一定影响,水泥用量过大,达到了规范要求的最高限,这是混凝土表面产生裂缝的主要因素。
2、设备因素
对张拉设备进行校验,如果张拉用的千斤顶油表度数不准,张拉力超过设计值,造成台座变形位移,假如浇注完混凝土后,台座发生变形,混凝土表面就会产生裂纹。
经检查,设备符合要求,台座地基满足要求,没有发现台座变形、位移、下沉现象。
3、施工工艺因素
(1)、混凝土的拌制。
拌和设备是500型强制式搅拌机,操作方面,拌和时间为1min左右,时间过短,从而影响混凝土的均匀性,取其坍落度为3.5,判定水灰比超过了设计用量,水灰比过大,混凝土干缩量加大,产生干缩裂缝。
(2)、混凝土浇注。
工地采用插入式振动器振密,振捣过程出现过振现象,致使混凝土表面粗细集料离析,靠近模板的混凝土表面细集料集中。
(3)、混凝土养生。
现场操作往往是等混凝土脱模后才开始养生,空心板顶面裸露在大气中,夏季最高气温达35℃,加快了水份的蒸发,致使表面干缩裂缝。
4、混凝土内箍筋的影响因素
由于钢筋和混凝土膨胀率的差异,钢材的膨胀率大于混凝土的膨胀率,混凝土表面的拉应力小于钢筋膨胀所产生的应力,从而使混凝土表面拉裂。
5、混凝土自身应力形成的裂缝。
(1)、收缩裂缝。
混凝土凝固时,一些水份与水泥颗粒结合,使体积减少,称为凝缩。
另一些水份蒸发,使体积减小,称为干缩,凝缩和干缩合称为收缩。
混凝土的干燥过程是由表面逐步扩展到内部的,在混凝土内呈现含水梯度。
因此产生表面收缩大,内部收缩小的不均匀收缩,致使表面混凝土承受拉力,内部混凝土承受压力。
当表层混凝土所产生的拉力超过其抗拉强度时,便产生收缩裂缝。
(2)、温度裂缝:混凝土受水泥水化放热、阳光照射、夜间降温等因素影响而出现冷热变化时,将发生收缩和膨胀,产生温度应力,温度应力超过混凝土抗拉强度时,即产生裂缝。
可以初步推断是由于水化热过大引起的温度裂缝。
由于水化热作用,使混凝土内部与外表面温差过大,这时内部混凝土受压应力,表面混凝土受拉应力。
由于混凝土抗压强度远大于抗拉强度,表面拉应力可能先达到并超过混凝土抗拉强度,而产生间距大致相等的直线裂缝(称温差裂缝),该结构裂缝形态正是如此。
四、裂缝的预防措施
1、严把原材料质量关。
进场材料必须经严格检验后方能使用,对高标号混凝土使用高标号水泥,减少水泥用量,水泥初凝时间必须大于45分钟。
细集料使用级配良好的中砂,细度模数Mx应大于2.6,含泥量小于2%。
粗骨料使用质地坚硬、级。