LTE学习笔记:物理层过程 二
- 格式:docx
- 大小:340.26 KB
- 文档页数:13
20140307 (HARQ、HARQ process、HARQ information、同步/异步、自适应/非自适应、ACK/NACK反馈、上行HARQ(1))一、HARQ介绍HARQ(Hybrid Automatic Repeat reQuest),混合式自动重传请求,是一种结合FEC(Forward Error Correction)与ARQ(Automatic Repeat reQuest)方法的技术。
FEC通过添加冗余信息,使得接收端能够纠正一部分错误,从而减少重传的次数。
对于FEC无法纠正的错误,接收端会通过ARQ机制请求发送端重发数据。
接收端使用检错码,通常为CRC校验,来检测接收的数据包是否出错。
如果无错,则发送一个肯定的确认(ACK);如果出错,则接收端会丢弃数据包,并发送一个否定的确认(NACK)给发送端,发送端收到NACK后,会重发相同的数据。
前面介绍的ARQ机制采用丢弃数据包并请求重传的方式。
然而,虽然这些数据包无法被正确解码,但其中还是包含了有用的信息,如果丢弃了,这些有用的信息就丢失了。
通过使用HARQ with soft combining,接收到的错误数据包会保存在一个HARQ buffer中,并与后续接收到的重传数据包进行合并,从而得到一个比单独解码更可靠的数据包。
然后对合并后的数据包进行解码,如果还是失败,则再请求重传,再进行软合并。
根据重传的bit信息与原始传输是否相同,HARQ with soft combining 分为Chase combining和incremental redundancy(IR,增量冗余)两类。
Chase combining中重传的bit信息与原始传输相同;增量冗余中重传的bit信息不需要与原始传输相同。
这里我们只介绍增量冗余,因为LTE中使用的是这种机制。
在增量冗余中,每一次重传并不需要与初始传输相同。
相反,会生成多个coded bit的集合,每个集合都携带相同的信息。
转LTE学习笔记:物理层过程二2019年06月05日10:37:14 Zimri阅读数476.测量过程物理层的测量过程一般是由高层配置和控制的,物理层只是提供测量的能力而已。
根据测量性质的不同,测量可分为同频测量、异频测量、异系统测量;根据测量的物理量不同,可分为电平大小测量、信道质量测量、负荷大小测量等。
根据测量报告的汇报方式,可分为周期性测量、事件测量等。
协议中一般根据测量的位置不同,将测量分为UE侧的测量、eUTRAN侧的测量。
6.1 手机侧测量UE侧的测量有连接状态的测量和空闲状态的测量。
手机处于连接状态的时候,eUTRAN给UE发送RRC连接重配置消息,这个消息相当于eUTRAN对UE进行测量控制命令。
这个命令包括:要求UE进行的测量类型及ID,建立、修改、还是释放一个测量的命令,测量对象、测量数量、测量报告的数量和触发报告的方式(周期性报告、事件性汇报)等。
手机处于空闲状态的时候,eUTRAN的测量控制命令是用系统消息(System Information)广播给UE的。
UE侧测量的参考位置是在UE的天线连接口处。
UE可以测量的物理量包括:RSRP(Reference Signal Received Power,参考信号接收电平):一定频带内,特定小区参考信号RS的多个RE的有用信号的平均接收功率(同一个RB内的RE平均功率)。
RSSI(Received Signal Strength Indicator,接收信号强度指示):系统在一定频带内,数个RB内的OFDM符号的总接收功率的平均值,包含有用信号、循环前缀干扰、噪声在内的所有功率。
eUTRAN内的RSSI主要用于干扰测量。
RSRQ(Reference Signal Received Quality,参考信号接收质量):是一种信噪比,即RSRP 和RSSI的比值RSRP一般是单个RB的功率,RSSI可能是N个RB的功率,所以RSRQ=(N*RSRP)/RSSI。
原文地址:第二章 LTE物理层解析---参考信号作者:LTE通信人家2.3 参考信号【完整内容,请点击这里】参考信号(Reference Signal,RS),就是常说的“导频”信号,是由发射端提供给接收端用于信道估计或信道探测的一种已知信号。
2.3.1 下行参考信号下行参考信号有以下目的。
(1)下行信道质量测量。
(2)下行信道估计,用于UE端的相干检测和解调。
下行参考信号由已知的参考信号构成,下行参考信号是以RE为单位的,即一个参考信号占用一个RE。
这些参考信号可分为两列:第1参考信号和第2参考信号。
第1参考信号位于每个0.5ms时隙的第1个OFDM符号,第2参考信号位于每个时隙的倒数第3个OFDM符号。
第1参考信号位于第1个OFDM符号有助于下行控制信号被尽早解调。
在频域上,每6个子载波插入一个参考信号,这个数值是在信道估计性能和RS开销之间求取平衡的结果,RS过疏则信道估计性能无法接受;RS过密则会造成RS开销过大。
每6个子载波插入一个RS既能在典型频率选择性衰落信道中获得良好的信道估计性能,又能将RS控制在较低水平。
RS的时域密度也是根据相同的原理确定的,每个时隙插入两行RS既可以在典型的运动速度下获得满意的信道估计性能,RS的开销又不是很大。
在参考信号的设置上的考虑主要是基于对高速移动性的支持,有兴趣大家可以参考【3】这本书里面的推算。
另外,第0参考信号和第1参考信号在频域上是交错放置的。
而且,下行参考信号的设计还必须有一定的正交性,以有效地支持多天线并行传输(最多需支持4个并行流),实际上通过在时域上错开放置第2与第3参考信号来解决这个问题。
如图:图2.3.1-1 天线端口对应的参考信号下图是摘自3GPP 36.211,不过它那个图有点问题,在单天线的时候,其实它也假设是同时存在天线端口0,1的,因此,对应到天线端口1的资源粒子是空着的,不能使用。
这有个好处就是不会对其它系统配置,比如说另外同时存在的支持两天线端口的系统的参考信号造成干扰,因此单天线端口的图应该画成如下:图2.3.1-2单天线端口资源栅格图虽然图画的有点问题,不过在协议里面有明确说明,在天线端口0的情况下,它必须假设同时存在天线端口0,1。
4.3.3 其他上下行信道的调制/解调处理4.4 传输预编码Transform precoding (DFT )将数据依次作串并转换,变成并行的PUSCHSCM 点数据,再依次送入作PUSCHSCM 点的DFT变换。
这里指的传输预编码主要是做一个 DFT 变换,将数据变成频域数据。
The block of complex-valued symbols )1(),...,0(symb -M d d is divided into PUSCHsc symb M M sets, each corresponding to one SC-FDMA symbol. Transform precoding shall be applied according to1,...,01,...,0)(1)(PUSCH sc symb PUSCHsc 12PUSCHsc PUSCHscPUSCHsc PUSCH sc sc-=-=+⋅=+⋅∑-=-M M l M k ei M l d M k M l z M i M ikjπresulting in a block of complex-valued symbols)1(),...,0(symb -M z z . Thevariable RB scPUSCH RB PUSCH sc N M M ⋅=, where PUSCHRB M represents the bandwidth of the PUSCH in terms of resource blocks, and shall fulfilULRBPU SCH RB 532532N M ≤⋅⋅=ααα where 532,,ααα is a set of non-negative integers.输入:)1(),...,0(symb -M d d ,经过复值调制后的符号序列输出:DFT 后的symb M 点数据,以PUSCHSC M 点为一个并行单元4.5 层映射层映射和接下来的与编码过程都与MIMO 有关MIMO 技术是LTE 中采用的关键技术之一,在LTE 系统中,MIMO 传输方案大致可分为两大类:发送分集和空间复用。
第六章 TD-LTE 系统物理层基本过程6.1小区搜索与同步小区搜索过程是指UE 获得与所在eNodeB 的下行同步(包括时间同步和频率同步),检测到该小区物理层小区ID 。
UE 基于上述信息,接收并读取该小区的广播信息,从而获取小区的系统信息以决定后续的UE 操作,如小区重选、驻留、发起随机接入等操作。
当UE 完成与基站的下行同步后,需要不断检测服务小区的下行链路质量,确保UE 能够正确接收下行广播和控制信息。
同时,为了保证基站能够正确接收UE 发送的数据,UE 必须取得并保持与基站的上行同步。
6.1.1配置同步信号在LTE 系统中,小区同步主要是通过下行信道中传输的同步信号来实现的。
下行同步信号分为主同步信号(Primary Synchronous Signal,PSS )和辅同步信号(Secondary Synchronous Signal,SSS)。
TD-LTE 中,支持504个小区ID ,并将所有的小区ID 划分为168个小区组,每个小区组内有504/168=3个小区ID 。
小区ID 号由主同步序列编号 和辅同步序列编号共同决定,具体关系为。
小区搜索的第一步是检测出PSS ,在根据二者间的位置偏移检测SSS ,进而利用上述关系式计算出小区ID 。
采用PSS 和SSS 两种同步信号能够加快小区搜索的速度。
下面对两种同步信号做简单介绍。
)1(ID N )1()2(3ID ID cell ID N N N +=)2(ID N 1) PSS 序列为进行快速准确的小区搜索,PSS 序列必须具备良好的相关性、频域平坦性、低复杂度等性能,TD-LTE 的PSS 序列采用长度为63的频域Zadoff-Chu (ZC )序列[1]。
ZC 序列广泛应用于LTE 中,除了PSS ,还包括随机接入前导和上行链路参考信号。
ZC 序列可以表示为 ]2/)1(2exp[ZCq N nl n n q j a ++−=π 其中,是ZC 序列的根指数,l N l N n ZC ,},1,...1{∈−∈}1,...1{−∈ZC q N a 可以是任何整数,为了简单在LTE 中设置l=0。
20140307 (HARQ、HARQ process、HARQ information、同步/异步、自适应/非自适应、ACK/NACK反馈、上行HARQ(1))一、HARQ介绍HARQ(Hybrid Automatic Repeat reQuest),混合式自动重传请求,是一种结合FEC(Forward Error Correction)与ARQ(Automatic Repeat reQuest)方法的技术。
FEC通过添加冗余信息,使得接收端能够纠正一部分错误,从而减少重传的次数。
对于FEC无法纠正的错误,接收端会通过ARQ机制请求发送端重发数据。
接收端使用检错码,通常为CRC校验,来检测接收的数据包是否出错。
如果无错,则发送一个肯定的确认(ACK);如果出错,则接收端会丢弃数据包,并发送一个否定的确认(NACK)给发送端,发送端收到NACK后,会重发相同的数据。
前面介绍的ARQ机制采用丢弃数据包并请求重传的方式。
然而,虽然这些数据包无法被正确解码,但其中还是包含了有用的信息,如果丢弃了,这些有用的信息就丢失了。
通过使用HARQ with soft combining,接收到的错误数据包会保存在一个HARQ buffer中,并与后续接收到的重传数据包进行合并,从而得到一个比单独解码更可靠的数据包。
然后对合并后的数据包进行解码,如果还是失败,则再请求重传,再进行软合并。
根据重传的bit信息与原始传输是否相同,HARQ with soft combining分为Chase combining和incremental redundancy(IR,增量冗余)两类。
Chase combining中重传的bit信息与原始传输相同;增量冗余中重传的bit信息不需要与原始传输相同。
这里我们只介绍增量冗余,因为LTE中使用的是这种机制。
在增量冗余中,每一次重传并不需要与初始传输相同。
相反,会生成多个coded bit的集合,每个集合都携带相同的信息。
一般下行过程详细流程图1:LTE 的一般下行过程的详细流程图1是我根据LTE 物理层协议专门画的LTE 的一般下行过程的详细流程。
旨在让大家明白物理层是怎么工作的。
有以下两点说明:1、 上行过程很相似,只是上行中UE 的能力比较小,调度信息等是基站通过下行控制信息指定的。
36.302中可以看到如图2所示的一些较详细信息,是上行过程的部分流程。
Node B UEError图2:上行共享信道的物理模型2、 这里是一般下行过程,是下行共享信道的整个物理过程,下行还有控制信道、广播信道等。
那些的过程可能只有其中的部分。
或者还有些没有提到的。
详细内容可以参考36.212.和36.302.3、 本人水平有限,难免有错误和遗漏,发现请指出。
下面详细点介绍图1中的相关内容。
分成4个部分:1、红色所示的物理信道与调制(36.211);2、蓝色所示的复用与信道编码(36.212);3、橙色所示的物理层测量(36.214);以及物理层过程相关内容(36.213)。
四个部分的关系如图3所示。
物理信道与调制(36.211)直接与最下面的空中接口交互信息。
是离发射端和接收端最近的。
然后复用与信道编码(36.212)是在211的上面一点点。
可以认为有一个逻辑信道,在这部分要做信道编码等,与211有个映射关系。
213是高层和最后发射端的一个联系着。
高层通过213给陆玲辉编辑于2010年4月10日星期六211发命令等。
214是高层为了获得信道等信息而设置的。
To/From Higher Layers图3、物理层协议间以及与高层间关系1、211物理信道与调制:该部分包括图1中的红色部分。
物理信道有很多种,如下表1和2中的红色部分就是部分物理信道。
表1、下行传输信道与物理信道映射表2、上行传输信道和物理信道的映射表1和2就是212中的,是上/下行传输信道和物理信道的映射关系。
在我画的图中就是第四点数控复用部分提到的映射到物理信道。
可以看到,有好几种传输信道对应几种物理信道。
转LTE学习笔记:物理层过程二2019年06月05日10:37:14 Zimri阅读数476.测量过程物理层的测量过程一般是由高层配置和控制的,物理层只是提供测量的能力而已。
根据测量性质的不同,测量可分为同频测量、异频测量、异系统测量;根据测量的物理量不同,可分为电平大小测量、信道质量测量、负荷大小测量等。
根据测量报告的汇报方式,可分为周期性测量、事件测量等。
协议中一般根据测量的位置不同,将测量分为UE侧的测量、eUTRAN侧的测量。
6.1 手机侧测量UE侧的测量有连接状态的测量和空闲状态的测量。
手机处于连接状态的时候,eUTRAN给UE发送RRC连接重配置消息,这个消息相当于eUTRAN对UE进行测量控制命令。
这个命令包括:要求UE进行的测量类型及ID,建立、修改、还是释放一个测量的命令,测量对象、测量数量、测量报告的数量和触发报告的方式(周期性报告、事件性汇报)等。
手机处于空闲状态的时候,eUTRAN的测量控制命令是用系统消息(System Information)广播给UE的。
UE侧测量的参考位置是在UE的天线连接口处。
UE可以测量的物理量包括:RSRP(Reference Signal Received Power,参考信号接收电平):一定频带内,特定小区参考信号RS的多个RE的有用信号的平均接收功率(同一个RB内的RE平均功率)。
RSSI(Received Signal Strength Indicator,接收信号强度指示):系统在一定频带内,数个RB内的OFDM符号的总接收功率的平均值,包含有用信号、循环前缀干扰、噪声在内的所有功率。
eUTRAN内的RSSI主要用于干扰测量。
RSRQ(Reference Signal Received Quality,参考信号接收质量):是一种信噪比,即RSRP 和RSSI的比值RSRP一般是单个RB的功率,RSSI可能是N个RB的功率,所以RSRQ=(N*RSRP)/RSSI。
RSRQ测量用于基于信道质量的切换和重选预判。
UE处于空闲状态时,进行小区选择或重选一般使用RSRP;而UE处于连接状态进行切换时,通常需要比较RSRP和RSRQ。
如果仅比较RSRP可能导致频繁切换,仅比较RSRQ 虽可减少切换次数,但可能导致掉话。
RSTD(Reference Signal Time Difference,参考信号时间差):UE接收到的两个相邻小区发送的、同一子帧的时间差。
6.2 基站侧测量参考位置在天线的接口处,一般会指明是发射天线还是接收天线。
总结如下表7.共享信道物理过程LTE的物理共享信道是业务数据承载的主体。
他还顺便帮忙携带一些寻呼消息,部分广播消息,上下行功控消息等。
物理共享信道主要包括PUSCH和PDSCH。
这两个共享信道的物理层过程主要做三件事:数据传输、HARQ和链路自适应。
数据传输过程中出错了怎么办?这就需要HARQ过程来解决;数据传输过程还需要根据无线环境自适应调制传输方式。
7.1 数据传输过程数据传输就是把要传送的数据,放到LTE视频资源上,通过天线发射出去,然后接收端在特定的时、频资源上将这些数据接收下来。
不管是下行还是上行数据传输,干活的人不一样,分别是PDSCH、PUSCH,但负责协调调度的人是一样的,都是PDCCH。
PDCCH携带的信息有时、频资源的位置,编码调制方式,HARQ的控制信息等。
基站是上下行资源调度的决策者,他通过PDCCH控制上下行数据传输。
通过PDCCH的格式控制,PDSCH和PUSCH可以传送多种类型的数据。
系统需要配置PDCCH参数来决定如何分配和使用资源,主要依据以下因素:(1)QoS参数(2)在eNodeB中准备调度的资源数据数量(3)UE报告的信道质量指示(CQI)(4)UE能力(5)系统带宽(6)干扰水平下行方向,在长度为1ms的子帧结构中,1~3个符号传送协调调度信息(PDCCH),剩余的符号传送数据信息(PDSCH)。
也就是说调度信息和对应的数据信息可以位于同一个子帧内。
在下行数据接收的时候,终端不断检测PDCCH所携带的调度信息。
发现某个协调调度信息属于自己的,则按照协调调度信息的指示接收属于自己的PDSCH数据信息。
在上行方向,终端需要根据下行的PDCCH的调度信息,进行上行数据的发送。
由于无线传输和设备处理都需要时间,因而下行的PDCCH和上行的PUSCH之间存在时延。
对于FDD,这个时延固定为4ms,即4个子帧,如图所示。
对于TDD模式,时延和上下行时隙的比例有关,但也必须大于等于4ms。
上行数据在发送之前,终端需要等待基站给自己的下行协调调度信息,发现自己允许传输数据,则在PUSCH上发送自己的数据。
对于某些较规律低速业务,如VoIP,在LTE中为了降低PDCCH信令开销,定义了半持续调度(Semi-Persistent Scheduling,SPS)的模式。
半持续调度的主要思想是对于较规则的低速业务,不需要每个子帧都进行动态资源调度。
可以按照一次指令的方式,工作较长时间,从而节省信令开销。
7.2 盲检测过程eNodeB针对多个UE同时发送PDCCH,终端如何保证接收到属于自己的控制信息,又不给系统带来过多开销?答案是终端需要不断检测下行的PDCCH调度信息。
但在检测之前,终端并不清楚PDCCH传输什么样的信息,使用什么样的格式,但终端知道自己需要什么。
有哪些我不知道,有哪些需要我知道,在这种情况下只能采用盲检测的方式。
了解盲检测之前先了解两个概念:RNTI和DCI。
RNTI(Radio Network Temporary Identifier,无线网络临时标识)是高层用来告诉物理层,需要接收或者发送什么样的控制信息。
根据不同的控制消息,RNTI可以表示为X-RNTI。
(1)SI-RNTI(System Information RNTI):基站发送系统消息的标识。
(2)P-RNTI(Paging RNTI):基站发送寻呼消息的标识。
(3)RA-RNTI(Random Access RNTI):基站发送随机接入响应的标识,用户用来发送随机接入的前导消息。
(4)C-RNTI(Cell RNTI):基站为终端分配的用于用户业务临时调度的标识。
(5)TPC-PUCCH-RNTI(Transmit Power Control PUCCH RNTI):PUCCH上行功率控制信息标识。
(6)TPC-PUSCH-RNTI:PUSCH上行功率控制信息标识。
(7)SPS C-RNTI(Semi-Persistent Scheduling RNTI):半静态调度时,基站为终端分配的用于用户业务临时调度的标识,用法和C-RNTI一样。
(8)M-RNTI(MBMS RNTI):基站为终端分配的用于MBMS业务临时调度的标识。
为提高终端RNTI的效率,根据RNTI属性的不同,将其分在两个不同的搜索空间中:公共搜索空间(Common Search Space)和UE特定的搜索空间(UE Specific Search Space)。
前者每个UE都可以在此查找相应的信息;后者UE只能在属于自己的空间中搜索空间信息。
SI-RNTI、P-RNTI、RA-RNTI属于公共搜索空间的信息;其他RNTI属于UE特定的搜索空间的信息。
UE使用X-RNTI对PDCCH进行盲检测,X-RNTI如同开启PDCCH的钥匙。
UE既要查看公共搜索空间,又要查看UE特定搜索空间。
终端要使用SI-RNTI、P-RNTI、RA-RNTI等公共钥匙查看公共搜索空间;基站为终端分配了C-RNTI、TCP-PUCCH-RNTI等私人钥匙,来开启自己的私人空间。
DCI(Downlink Control Information,下行控制信息)有上行资源调度信息、下行资源调度信息、上行功率控制信息。
一个DCI对应一个RNTI。
每个UE在每一个子帧中只能看到一个下行控制信息(DCI)。
针对不同的用途,物理层设计了不同的DCI格式。
根据调度信息的方向(上行or下行)、调度信息的类型(Type)、MIMO传输模式(Mode)、资源指示方式的不同,定义了不同的DCI格式,如图时、频资源指示是告诉终端,信息被放在了什么位置。
协议定义了3种时频资源的指示方式:Type0、Type1、Type2。
Type0、Type1采用时、频资源分组。
Type2是以资源起始位置,加上连续时、频资源块的长度,来定义时、频资源占用的位置的。
这种方式无须指示RB位置,信令开销小,但只能分配连续的VRB。
X-RNTI和DCI就是PDCCH通过加扰和CRC穿在身上的外衣,携带了很多标识自己特性的信息,可以让终端方便地识别出属于自己的、自己所需的控制信息。
终端就是根据这些控制信息的指示,在PDSCH信道上的特定时、频资源上,把属于自己的下行数据取下来;同时终端按照这些控制信息的要求,在PUSCH相应的时频资源上用一定的功率把上行信息发出去。
基站要寻呼UE,就要通过P-RNTI标识PDCCH,并指示DCI。
UE会用P-RNTI解码PDCCH,并根据DCI的信息,在PDSCH上找到下行寻呼数据。
在随机接入过程中,UE会在特定的时、频资源上发送一个前导码Preamble;基站根据收到PARCH消息(包括前导Preamble)的时、频资源位置推算RA-RNTI,并用该RA-RNTI 标识PDCCH,然后发送随机接入响应,该响应中包含基站为终端分配的临时调度标识号TC-RNTI(Temporal C-RNTI)。
当随机接入成功后,便将TC-RNTI转正为C-RNTI。
基站与终端建立连接后,通过C-RNTI或SPS-RNTI对PDCCH进行标识。
终端对PDCCH 察言观色,进而获得上下行调度信息。
7.3 HARQ重传合并机制HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)技术是自动重传请求(ARQ)和前向纠错(Forword Error Correction,FEC)两种技术的结合。
所谓混合(Hybrid),即指重传和合并技术的混合。
LTE知错就改的基站就是基于重传和合并。
ARQ是重传,但系统对错误的忍耐有限度,于是定义了最大重传次数。
不但要重传,收到两次或多次重传的内容还要比对起来看。
合起来看,试图把正确的内容尽快找出来,以便降低重传次数。
这就是FEC技术。
HARQ的重传机制有三种:(1)停止等待(Stop-And-Wait,SAW)(2)回退(3)选择重传。
停止等待协议是发送每一帧数据后,等待接收方的反馈应答ACK/NACK。
一旦接受方反馈数据错误的NACK,发送方就需呀重发该数据,直到接收方反馈确认无误(ACK)后才发送新数据,如图所示。