横截面上切应力分布规律
- 格式:ppt
- 大小:2.28 MB
- 文档页数:43
一、横截面上的切应力实心圆截面杆和非薄壁的空心圆截面杆受扭转时,我们没有理由认为它们在横截面上的切应力象薄壁圆筒中那样沿半径均匀分布导出这类杆件横截面上切应力计算公式,关键就在于确定切应力在横截面上的变化规律。
即横截面上距圆心τp任意一点处的切应力p与p的关系为了解决这个问题,首先观察圆截面杆受扭时表面的变形情况,据此做出内部变形假设,推断出杆件内任意半径p处圆柱表面上的切应变γp,即γp与p的几何关系利用切应力与切应变之间的物理关系,再利用静力学关系求出横截面上任一点处切应力τp的计算公式实验表明:等直圆杆受扭时原来画在表面上的圆周线只是绕杆的轴线转动,其大小和形状均不变,而且在小变形情况下,圆周线之间的纵向距离也不变图8-56扭转时的平面假设:等直圆杆受扭时它的横截面如同刚性圆盘那样绕杆轴线转动显然这就意味着:等直圆杆受扭时,其截面上任一根沿半径的直线仍保持为直线,只是绕圆心旋转了一个角度φ图8-57现从等直圆杆中取出长为dx的一个微段,从几何、物理、静力学三个方面来具体分析圆杆受扭时的横截面上的应力图8-581.几何方面小变形条件下dφ为dx长度内半径的转角,γ为单元体的角应变图8-59或因为dφ和dx是一定的,故越靠近截面中心即半径R越小,角应变γ也越小且γ与R成正比例(或线性关系)由平面假设:对同一截面上各点θ表示扭转角沿轴长的变化率,称为单位扭转角,在同一截面上其为常数所以截面上任一点的切应力与该点到轴心的距离p成正比p为圆截面上任一点到轴心距离,R为圆轴半径图8-60上式为切应力的变化规律2.物理方面(材料在线性弹性范围内工作)由剪切胡克定律由于G和为常数,所以上式表明受扭等直圆杆在线性弹性范围内工作时,横截面上的切应力在同一半径p 的圆周上各点处大小相同,但它们随p做线性变化同一横截面上的最大切应力在横截面的边缘处。
这些切应力的方向均垂直于各自所对应的半径,指向与扭矩对应3.静力学方面前面已找出了受扭等直圆杆横截面上的切应力τp随p变化的规律,但还没有把与扭矩T联系起来。
第18讲教学方案——弯曲切应力、弯曲强度条件§7-3 弯曲切应力梁受横弯曲时,虽然横截面上既有正应力σ,又有剪应力 τ。
但一般情况下,剪应力对梁的强度和变形的影响属于次要因素,因此对由剪力引起的剪应力,不再用变形、物理和静力关系进行推导,而是在承认正应力公式(6-2)仍然适用的基础上,假定剪应力在横截面上的分布规律,然后根据平衡条件导出剪应力的计算公式。
1.矩形截面梁对于图6-5所示的矩形截面梁,横截面上作用剪力Q 。
现分析距中性轴z 为y 的横线1aa 上的剪应力分布情况。
根据剪应力成对定理,横线1aa 两端的剪应力必与截面两侧边相切,即与剪力Q 的方向一致。
由于对称的关系,横线1aa 中点处的剪应力也必与Q 的方向相同。
根据这三点剪应力的方向,可以设想1aa 线上各点剪应力的方向皆平行于剪力Q 。
又因截面高度h 大于宽度b ,剪应力的数值沿横线1aa 不可能有太大变化,可以认为是均匀分布的。
基于上述分析,可作如下假设:1)横截面上任一点处的剪应力方向均平行于剪力 Q 。
2)剪应力沿截面宽度均匀分布。
基于上述假定得到的解,与精确解相比有足够的精确度。
从图6-6a 的横弯梁中截出dx 微段,其左右截面上的内力如图6-6b 所示。
梁的横截面尺寸如图6-6c 所示,现欲求距中性轴z 为y 的横线1aa 处的剪应力 τ。
过1aa 用平行于中性层的纵截面11cc aa 自dx 微段中截出一微块(图6-6d )。
根据剪应力成对定理,微块的纵截面上存在均匀分布的剪应力 τ'。
微块左右侧面上正应力的合力分别为1N 和2N ,其中*1I 1**z zAzA S I M dA I My dA N ===⎰⎰σ (a ) *1II 2)()(**z z Az A S I dM M dA I y dM M dA N +=+==⎰⎰σ (b)式中,*A 为微块的侧面面积,)(II I σσ为面积*A 中距中性轴为 1y 处的正应力,⎰=*1*A z dA y S 。
材料力学(应力应变部分)→规定载荷作用下,强度要求,就是指构件应有足够的抵抗破坏的能力。
刚度要求,就是指构件应有足够的抵抗变形的能力。
→变形的基本假设:连续性假设,均匀性假设,各向同性假设。
→沿不同方向力学性能不同的材料,称为各向异性材料,如木材、胶合板和某些人工合成材料。
→ 分布力 表面力集中力(火车轮对钢轨压力,滚珠轴承对轴的反作用力) 体积力是连续分布于物体内各点的力,例如物体的自重和惯性力等。
→动载荷,静载荷→应力p 应分解为正应力σ ,切应力τ 。
→应力单位pa ,1pa=1N/m 2;常用Mpa ,1Mpa=106pa 。
第二章 拉伸、压缩与剪切2.2 轴向拉伸或压缩时横截面上的内力和应力→习惯上,把拉伸的轴力规定为正,压缩时的轴力规定为负。
→用横截面上的应力来度量杆件的受力程度。
→F N =σA ;σ(x)=F N (x)/A(x)2.3 直杆轴向拉伸或压缩时斜截面上的内力和应力 α轴向拉伸(压缩)时,在杆件的横截面上,正应力为最大值;在与杆件轴线成45°的斜截面上,切应力为最大值。
最大切应力在数值上等于最大正应力的二分之一。
此外,α=90°时,σα=τα=0 ,这表示在平行于杆件轴线的纵向截面上无任何应力。
(应力,p=F/A ,45°斜截面上,力→√22,面积→√22。
) 2.7 安全因数许用应力和安全因数的数值,可以在有关部门的一些规范中查到。
目前一般机械制造中,在静载的情况下,对塑性材料可取n s =1.2~2.5。
脆性材料均匀性较差,且断裂突然发生,有更大的危险性,所以取n b =2~3.5,甚至取到3~9。
2.8 轴向拉伸或压缩时的变形→胡克定律,当应力不超过材料的比例极限时,应力与应变成正比。
σ=Eε ,弹性模量E 的值随材料而不同。
∆l l=ε=σE =F AE ;∆l =FLAE即,对长度相同,受力相等的杆件,有EA 越大则变形Δl越小,所以称EA 为杆件的抗拉/压刚度。
材料力学知识点总结材料力学是一门研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科,它是工程力学的重要组成部分,对于机械、土木、航空航天等工程领域都有着至关重要的作用。
以下是对材料力学主要知识点的总结。
一、拉伸与压缩拉伸和压缩是材料力学中最基本的受力形式。
在拉伸或压缩时,杆件横截面上的内力称为轴力。
轴力的正负规定为:拉伸时轴力为正,压缩时轴力为负。
通过实验可以得到材料在拉伸和压缩时的应力应变曲线。
低碳钢的拉伸应力应变曲线具有明显的四个阶段:弹性阶段、屈服阶段、强化阶段和局部变形阶段。
弹性阶段内应力与应变成正比,遵循胡克定律;屈服阶段材料出现明显的塑性变形;强化阶段材料抵抗变形的能力增强;局部变形阶段试件在某一局部区域产生显著的收缩,直至断裂。
对于拉伸和压缩杆件,其横截面上的正应力计算公式为:$\sigma =\frac{N}{A}$,其中$N$为轴力,$A$为横截面面积。
而纵向变形量$\Delta L$可以通过公式$\Delta L =\frac{NL}{EA}$计算,其中$E$为材料的弹性模量,$L$为杆件长度。
二、剪切与挤压剪切是指在一对相距很近、大小相等、方向相反的横向外力作用下,杆件的横截面沿外力作用方向发生相对错动的变形。
在剪切面上的内力称为剪力。
剪切面上的平均切应力计算公式为:$\tau =\frac{Q}{A}$,其中$Q$为剪力,$A$为剪切面面积。
挤压是在连接件与被连接件之间,在接触面上相互压紧而产生的局部受压现象。
挤压面上的应力称为挤压应力,其计算公式为:$\sigma_{jy} =\frac{F_{jy}}{A_{jy}}$,其中$F_{jy}$为挤压力,$A_{jy}$为挤压面面积。
三、扭转扭转是指杆件受到一对大小相等、方向相反且作用面垂直于杆件轴线的力偶作用时,杆件的横截面将绕轴线产生相对转动。
圆轴扭转时,横截面上的内力是扭矩。
扭矩的正负规定:右手螺旋法则,拇指指向截面外法线方向为正,反之为负。