土中应力分布及计算复习过程
- 格式:ppt
- 大小:602.51 KB
- 文档页数:41
土体中的应力计算在土体中,应力是指单位面积上的力的作用,可以分为垂直应力和水平应力。
垂直应力是指垂直于土体中其中一点的力的作用,通常用σ表示,单位为N/m²或Pa;水平应力是指与土体中其中一点切向的力的作用,通常用τ表示,单位为N/m²或Pa。
在计算土体中的应力时,需要先确定作用力的大小和方向。
作用力可以分为自重应力、表面荷载和边界条件所引起的应力。
自重应力是由土体自身的重力引起的应力,可以通过土体的密度和重力加速度来计算;表面荷载是由于外界施加在土体上的荷载,可以通过荷载的大小和分布情况来计算;边界条件所引起的应力是由于土体边界的约束而产生的应力,可以根据边界条件的空间限制来计算。
计算垂直应力时,需要将作用力作用在单位面积上,即垂直应力等于作用力的大小除以土体的面积。
例如,对于自重应力来说,垂直应力可以通过土体的密度乘以重力加速度来计算。
而对于表面荷载来说,垂直应力可以通过荷载的大小和分布情况来计算。
计算水平应力时,需要考虑土体的弹性特性。
根据弹性理论,水平应力的大小与垂直应力的大小和土体的弹性模量有关。
弹性模量是反映土体抵抗应力的能力的指标,可以通过试验或经验公式估算得到。
一般来说,弹性模量越大,土体的抵抗应力能力越强,水平应力的大小也越大。
在应力计算时,还需要考虑土体的变形特性。
土体的变形可以分为弹性变形和塑性变形两种。
弹性变形是指在荷载作用后,土体恢复到无荷载状态时的变形,是可逆的,可以通过应力和应变之间的线性关系进行计算。
而塑性变形是指在荷载作用后,土体不完全恢复到无荷载状态时的变形,是不可逆的,需要通过试验或经验公式来确定。
总之,土体中的应力计算是根据应力平衡原理和弹性力学原理进行的,需要考虑土体的类型、作用力的大小和方向以及土体的弹性和变形特性。
通过合理的应力计算,可以为土壤工程和土木工程的设计和施工提供基础数据。
第二章土中应力分布及计算一、思考题1、自重应力,附加应力的大小与地基土的性质是否相关?2、自重应力与附加应力在地基中的分布各有何特点?3、基底压力分布的主要影响因素有哪些?4、在基底总压力不变的前提下,增大基础埋深对土中应力分布有什么影响?5、宽度相同的矩形和条形基础,其基底压力相同,在同一深度处,哪一个基础下产生的附加应力大?6、地下水位升降,对土中应力分布有何影响?7、自重应力,附加应力计算时的起算点是否相同?二、选择题1、有两个不同的基础,其基础总压力相同,问在同一深度处,哪一个基础产生的附加应力大?()A、宽度小的基础产生的附加应力大B、宽度小的基础产生的附加应力小C、宽度大的基础产生的附加应力小D、两个基础产生的附加应力相等2、某场地自上而下的土层分布为:第一层粉土,厚3m,重度γ=18kN/m3;第二层粘土,厚5m,重度γ=18.4kN/m3,饱和重度γsat =19kN/m3,地下水位距地表5m,试求地表下6m处土的竖向自重应力()A、99.8kPaB、109.8kPaC、111kPaD、109.2kPa3、成层地基土中的自重应力()A、均匀分布B、直线分布C、曲线分布D、折线分布4、有一基础埋置深度d=1.5m,建筑物荷载及基础和台阶土重传至基底总压力为100KN/m2,若基底以上土的重度为18 KN/m2,基底以下土的重度为17 KN/m2,地下水位在地表处,则基底竖向附加压力为多少()A、85 KN/m2B、73 KN/m2C、88 KN/m25、一矩形基础,短边b=3m,长边l=4m,在长边方向作用一偏心荷载F+G=1200KN,偏心距为多少时,基底不会出现拉应力()A、0.5mB、0.57mC、0.67m6、由建筑物荷载或其它外载在地基内产生的应力称为()A、自重应力B、附加应力C、基底压力D、基底附加压力7、土的自重应力计算中假定的应力状态为()A、σz ≠0、σx≠0、τxz≠0 B、σz≠0、σx≠0、τxz=0C、σz ≠0、σx=0、τxz=08、当上部结构荷载的合力不变时,荷载偏心距越大,则基底压力平均值()A、越大B、越小C、不变9、基底总压力与基底附加压力哪一个大?()A、基底附加压力B、基底总压力C、二者相等10、地下水位下降,则土中自重应力()A、不变B、减小C、增大答案:B、A、D、C、C、B、B、C、B、C三、计算题1、某工程地基勘查结果:地表为杂填土,31/0.18mkN=γ,厚度mh50.11=;第二层土为粉土,32/0.19mkN=γ,厚度mh6.32=;第三层为中砂,33/5.19mkN=γ,厚度mh80.13=;第四层为坚硬岩石,地下水位1.5m。
土力学教程(同济大学土木工程学院编制)目录土的应力分布及计算学习指导土的自重应力基础底面压力集中力作用下土中应力计算分布荷载作用时的土中应力计算本章小结学习指导学习目标掌握土中自重应力计算、基底压力计算以及各种荷载条件下的土中附加应力计算方法。
学习基本要求1.掌握土中自重应力计算2.掌握基底压力和基底附加压力分布与计算3.掌握圆形面积均布荷载、矩形面积均布荷载、矩形面积三角形分布荷载以及条形荷载等条件下的土中竖向附加应力计算方法4.了解地基中其他应力分量的计算公式主要基础知识材料应力应变基本概念参阅:孙训方等编著,《材料力学》,高等教育出版社,1987。
弹性力学基础知识参阅:(1)徐芝伦著,《弹性力学》,高等教育出版社,1990。
(2)吴家龙编著,《弹性力学》,同济大学出版社,1993。
一、土的自重应力由土体重力引起的应力称为自重应力。
自重应力一般是自土体形成之日起就产生于土中。
1.均质地基土的自重应力土体在自身重力作用下任一竖直切面均是对称面,切面上都不存在切应力。
因此,在深度z处平面上,土体因自身重力产生的竖向应力σc z(称竖向自重应力)等于单位面积上土柱体的重力W,如图3-1所示。
在深度z处土的自重应力为:(3-1)式中γ 为土的重度,κN/μ3 ;F为土柱体的截面积,m2。
从公式(3-1)可知,自重应力随深度z线性增加,呈三角形分布图形。
图3-1 均质土的自重应力2.成层地基土的自重应力地基土通常为成层土。
当地基为成层土体时,设各土层的厚度为h i,重度为γi,则在深度z处土的自重应力计算公式为: (3-2)式中n为从天然地面到深度z处的土层数。
有关土中自重应力计算及其分布图绘制的具体方法可参见例题3-1某土层及其物理性质指标如图3-2所示,地下水位在地表下1.0 m,计算土中自重应力并绘出分布图。
【解】第1层:a点:z=0 m,b点:z=1m,c点:z=2m,第2层:d点:z=5m,土层中的自重应力σc z分布,如图3-2所示。
第五节 分布荷载作用时的土中应力计算用布西奈斯克公式和叠加原理计算土中应力,若基础底面的形状及分布荷载都有是有规律的,则可以通过积分求解得相应的土中的应力。
若设基础面上作用着强度为p 的竖直均布荷载,则微小面积dxdy 上的作用力dp =pdxdy 可作为集中力来看待,则在基底面积范围内积分求得:[]⎰⎰⎰⎰⎰⎰+-+-===Fz y x d d y x p z F RdQz Fz s d 25222353))()(),(2323ηξηξππσσ在求解上式时要知道三个条件:(1) 分布荷载p 的分布规律及其大小;(2) 分布荷载的妥布面积F 的几何形状及其大小; (3) 所求应力的位置M 点的坐标。
-、空间问题(一) 圆形面积上作用均布荷载时,土中竖向正应力z σ的计算:⎰⎰+-+=Rz r r d d pz z 0)cos 2(2023252223ϕρρρϕρππσp c z ασ=c α——应力系数,它是r 及z 的函数,可查表3-4得。
(二) 矩形面积均布荷载作用时土中竖向应力z σ的计算1、 矩形面积中点O 下土中竖向应力z σ的计算[]222222222252223412)4)(41(41)81(22)((23m n m nm n m m n m n mn pz d d zz arctgp b b l l++++++++-++-+==⎰⎰πηξξηπσp z 0ασ=其中:Bl n B z m ==, 0α可查表3-6得。
2、 矩形面积角点c 下土中竖向应力z σ的计算矩形基础当底面受到竖直均布荷载(此处指均布压力)作用时,基础角点下任意点深度处的竖向附加应力,可以利用基本公式(3-8)沿着整个矩形面积进行积分求得。
若设基础面上作用着强度为p 的竖直均布荷载,则微小面积dxdy 上的作用力dp =pdxdy 可作为集中力来看待,于是,由该集中力在基础角点o 以下深度为z 处的M 点所引起的竖向附加应力为:22/52)(1123z dxdyz r p d z ⋅⎥⎦⎤⎢⎣⎡+⋅=πσ 将222y x r +=代入上式并沿整个基底面积积分,即可得到矩形基底竖直均布荷载对角点o 以下深度为z 处所引起的附加应力为:⎰⎰++⋅=BoLoz z y x dxdy z p 52223)(23πσ ⎥⎦⎤⎢⎣⎡++++++⋅++=)1arctan()111(122222222n m nm n m n m m n p π =p a α式中:a α——矩形基础,底面受竖直局部荷载作用时,角点以下的竖直附加应力分布系数,),(n m f a =α可以从P56表3-7中查得bl n b zm ==,l :为基础底面的长边,b :为基础底面的短边,且b l ≥。
第五章土体中的应力计算第一节概述大多数建筑物是造建在土层上的,我们把支承建筑物的这种土层称为地基。
由天然土层直接支承建筑物的称天然地基,软弱土层经加固后支承建筑物的称人工地基,而与地基相接触的建筑物底部称为基础。
地基受荷以后将产生应力和变形,给建筑物带来两个工程问题,即土体稳定问题和变形问题。
如果地基内部所产生的应力在土的强度所允许的范围内,那么土体是稳定的,反之,土体就要发生破坏,并能引起整个地基产生滑动而失去稳定,从而导致建筑物倾倒。
地基中的应力,按照其因可以分为自重应力和附加应力两种:自重应力:由土体本身有效重量产生的应力称为自重应力。
一般而言,土体在自重作用下,在漫长的地质历史上已压缩稳定,不再引起土的变形(新沉积土或近期人工充填土除外)。
附加应力:由于外荷(静的或动的)在地基内部引起的应力称为附加应力,它是使地基失去稳定和产生变形的主要原因。
附加应力的大小,除了与计算点的位置有关外,还决定于基底压力的大小和分布状况。
一、应力~应变关系的假定真实土的应力~应变关系是非常复杂的,目前在计算地基中的附加应力时,常把土当成线弹性体,即假定其应力与应变呈线性关系,服从广义虎克定律,从而可直接应用弹性理论得出应力的解析解。
1、关于连续介质问题弹性理论要求:受力体是连续介质。
而土是由三相物质组成的碎散颗粒集合体,不是连续介质。
为此假设土体是连续体,从平均应力的概念出发,用一般材料力学的方法来定义土中的应力。
2、关于线弹性体问题理想弹性体的应力与应变成正比直线关系,且应力卸除后变形可以完全恢复。
土体则是弹塑性物质,它的应力应变关系是呈非线性的和弹塑性的,且应力卸除后,应变也不能完全恢复。
为此进行假设土的应变关系为直线,以便直接用弹性理论求土中的应力分布,但对沉降有特殊要求的建筑物,这种假设误差过大。
3、关于均质、等向问题理想弹性体应是均质的各向同性体。
而天然地基往往是由成层土组成,为非均质各向异性体。