八年级数学下册三角形证明知识点
- 格式:docx
- 大小:11.45 KB
- 文档页数:1
北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习《三角形的证明》全章复习与巩固(提高)【学习目标】1.经历回顾与思考的过程,深刻理解和掌握定理的探索和证明.2.结合具体实例感悟证明的思路和方法,能运用综合、分析的方法解决有关问题.3.能正确运用尺规作图的基本方法作已知线段的垂直平分线和角的平分线,以及绘制特殊三角形.【知识网络】【要点梳理】要点一、等腰三角形1.三角形全等的性质及判定全等三角形的对应边相等,对应角也相等.判定:SSS、SAS、ASA、AAS、HL.2.等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)3.等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴.判定定理:有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.4.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.要点诠释:等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,不如边长为a 的等边三角形他的高是2a ,面积是24;含有30°的直角三角形揭示了三角形中边与角的关系,打破了以往那种只有角或边的关系,同时也为我们学习三角函数奠定了基础.要点二、直角三角形1.勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.2.命题与逆命题命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的;正确的逆命题就是逆定理.3.直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL )要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.②直角三角形的全等判定方法,还有SSS,SAS,ASA,AAS,一共有5种判定方法. 要点三、线段的垂直平分线1.线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等.判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.3.如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧交于点M 、N ;作直线MN ,则直线MN 就是线段AB 的垂直平分线.要点诠释:①注意区分线段的垂直平分线性质定理和判定定理,注意二者的应用范围;②利用线段的垂直平分线定理可解决两条线段的和距离最短问题.要点四、角平分线1.角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.2.三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.3.如何用尺规作图法作出角平分线要点诠释:①注意区分角平分线性质定理和判定定理,注意二者的应用范围;②几何语言的表述,这也是证明线段相等的一种重要的方法.遇到角平分线时,要构造全等三角形.【典型例题】类型一、能证明它们么1. 如图,△ACD 和△BCE 都是等腰直角三角形,∠ACD=∠BCE=90°,AE 交CD 于点F ,BD 分别交CE 、AE 于点G 、H .试猜测线段AE 和BD 的数量和位置关系,并说明理由.【思路点拨】由条件可知CD=AC ,BC=CE ,且可求得∠ACE=∠DCB ,所以△ACE ≌△DCB ,即AE=BD ,∠CAE=∠CDB ;又因为对顶角∠AFC=∠DFH ,所以∠DHF=∠ACD=90°,即AE ⊥BD .【答案与解析】猜测AE=BD ,AE ⊥BD ;理由如下:∵∠ACD=∠BCE=90°,∴∠ACD+∠DCE=∠BCE+∠DCE ,即∠ACE=∠DCB ,又∵△ACD 和△BCE 都是等腰直角三角形,∴AC=CD ,CE=CB ,∵在△ACE 与△DCB 中,,AC DC ACE DCB EC BC =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△DCB (SAS ),∴AE=BD , ∠CAE=∠CDB ;∵∠AFC=∠DFH ,∠FAC+∠AFC=90°,∴∠DHF=∠ACD=90°,∴AE ⊥BD .故线段AE 和BD 的数量相等,位置是垂直关系.【总结升华】主要考查全等三角形的判定,涉及到等腰直角三角形的性质及对顶角的性质等知识点.举一反三:【变式】将两个全等的直角三角形ABC 和DBE 按图1方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图1中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图2中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;(3)若将图1中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图3.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.【答案】(1)证明:连接BF(如下图1),∵△ABC≌△DBE(已知),∴BC=BE,AC=DE.∵∠ACB=∠DEB=90°,∴∠BCF=∠BEF=90°.∵BF=BF,∴Rt△BFC≌Rt△BFE.∴CF=EF.又∵AF+CF=AC,∴AF+EF=DE.(2)解:画出正确图形如图2.(1)中的结论AF+EF=DE仍然成立;(3)证明:连接BF ,∵△ABC ≌△DBE ,∴BC=BE ,∵∠ACB=∠DEB =90°,∴△BCF 和△BEF 是直角三角形,在Rt △BCF 和Rt △BEF 中,,BC BE BF BF=⎧⎨=⎩ ∴△BCF ≌△BEF ,∴CF=EF ;∵△ABC ≌△DBE ,∴AC=DE ,∴AF=AC+FC=DE+EF .类型二、直角三角形2. 下列说法正确的说法个数是( )①两个锐角对应相等的两个直角三角形全等,②斜边及一锐角对应相等的两个直角三角形全等,③两条直角边对应相等的两个直角三角形全等,④一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等.A.1B.2C.3D.4【思路点拨】根据全等三角形的判定方法及“HL”定理,判断即可;【答案】C.【解析】A 、三个角相等,只能判定相似;故本选项错误;B 、斜边及一锐角对应相等的两个直角三角形,符合两三角形的判定定理“AAS”;故本选项正确;C 、两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”;故本选项正确;D、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等;故本选项正确;所以,正确的说法个数是3个.故选C.【总结升华】直角三角形全等的判定,一般三角形全等的判定方法都适合它,同时,直角三角形有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法,使用时应该抓住“直角”这个隐含的已知条件.3.(2016•南开区一模)问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上;(2)若△ABC三边的长分别为、、2(m>0,n>0,且m ≠n),运用构图法可求出这三角形的面积为.【思路点拨】(1)是直角边长为1,2的直角三角形的斜边;是直角边长为1,3的直角三角形的斜边;是直角边长为2,3的直角三角形的斜边,把它整理为一个矩形的面积减去三个直角三角形的面积;(2)结合(1)易得此三角形的三边分别是直角边长为m,4n的直角三角形的斜边;直角边长为3m,2n的直角三角形的斜边;直角边长为2m,2n的直角三角形的斜边.同样把它整理为一个矩形的面积减去三个直角三角形的面积可得.【答案与解析】解:(1)S△ABC=3×3﹣×1×2﹣×2×3﹣×1×3=;(2)构造△ABC如图所示,S△ABC=3m×4n﹣×m×4n﹣×3m×2n﹣×2m×2n=5mn.故答案为:(1)3;(2)5mn.【总结升华】此题主要考查了勾股定理应用,利用了数形结合的思想,通过构造直角三角形,利用勾股定理求解是解题关键,关键是结合网格用矩形及容易求得面积的直角三角形表示出所求三角形的面积进行解答.类型三、线段垂直平分线4. 如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC的中点为Q,连接PQ、DE.(1)求证:直线PQ是线段DE的垂直平分线;(2)如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.【思路点拨】(1)只需证明点P、Q都在线段DE的垂直平分线上即可.即证P、Q分别到D、E的距离相等.故连接PD、PE、QD、QE,根据直角三角形斜边上的中线等于斜边的一半可证;(2)根据题意,画出图形;结合图形,改写原题.【答案与解析】(1)证明:连接PD、PE、QD、QE.∵CE⊥AB,P是BF的中点,∴△BEF是直角三角形,且PE是Rt△BEF斜边的中线,∴PE=12 BF.又∵AD⊥BC,∴△BDF是直角三角形,且PD是Rt△BDF斜边的中线,∴PD=12BF=PE,∴点P在线段DE的垂直平分线上.同理可证,QD、QE分别是Rt△ADC和Rt△AEC斜边上的中线,∴QD=12AC=QE,∴点Q也在线段DE的垂直平分线上.∴直线PQ垂直平分线段DE.(2)当△ABC为钝角三角形时,(1)中的结论仍成立.如图,△ABC是钝角三角形,∠BAC>90°.原题改写为:如图,在钝角△ABC中,AD、CE分别是BC、AB边上的高,DA与CE的延长线交于点F,BF的中点为P,AC的中点为Q,连接PQ、DE.求证:直线PQ垂直且平分线段DE.证明:连接PD,PE,QD,QE,则PD、PE分别是Rt△BDF和Rt△BEF的中线,∴PD=12BF,PE=12BF,∴PD=PE,点P在线段DE的垂直平分线上.同理可证QD=QE,∴点Q在线段DE的垂直平分线上.∴直线PQ垂直平分线段DE.【总结升华】考查了线段垂直平分线的判定和性质、直角三角形斜边上的中线等于斜边的一半等知识点,图形较复杂,有一定综合性,但难度不是很大.举一反三:【变式】在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=40度.(1)求∠M的度数;(2)若将∠A的度数改为80°,其余条件不变,再求∠M的大小;(3)你发现了怎样的规律?试证明;(4)将(1)中的∠A改为钝角,(3)中的规律仍成立吗?若不成立,应怎样修改.【答案】(1)∵∠B=12(180°-∠A)=70°∴∠M=20°(2)同理得∠M=40°(3)规律是:∠M的大小为∠A大小的一半,证明:设∠A=α,则有∠B=12(180°-α)∠M=90°-12(180°-α)=12α.(4)不成立.此时上述规律为:等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半.类型四、角平分线5. 如图,△ABC中,∠A=60°,∠ACB的平分线CD和∠ABC的平分线BE交于点G.求证:GE=GD.【思路点拨】连接AG,过点G作GM⊥AB于M,GN⊥AC于N,GF⊥BC于F.由角平分线的性质及逆定理可得GN=GM=GF,AG是∠CAB的平分线;在四边形AMGN中,易得∠NGM=180°-60°=120°;在△BCG中,根据三角形内角和定理,可得∠CGB=120°,即∠EGD=120°,∴∠EGN=∠DGM,证明Rt△EGN≌Rt△DGM(AAS)即可得证GE=GM.【答案与解析】解:连接AG,过点G作GM⊥AB于M,GN⊥AC于N,GF⊥BC于F.∵∠A=60°,∴∠ACB+∠ABC=120°,∵CD,BE是角平分线,∴∠BCG+∠CBG=120°÷2=60°,∴∠CGB=∠EGD=120°,∵G是∠ACB平分线上一点,∴GN=GF,同理,GF=GM,∴GN=GM,∴AG是∠CAB的平分线,∴∠GAM=∠GAN=30°,∴∠NGM=∠NGA+∠AGM=60°+60°=120°,∴∠EGD=∠NGM=120°,∴∠EGN=∠DGM,又∵GN=GM,∴Rt△EGN≌Rt△DGM(AAS),∴GE=GD.【总结升华】此题综合考查角平分线的定义、三角形的内角和及全等三角形的判定和性质等知识点,难度较大,作辅助线很关键.举一反三:【变式】(2015春•澧县期末)如图:在△ABC中,∠C=90°AD是∠BAC的平分线,DE⊥AB 于E,F在AC上,BD=DF;证明:(1)CF=EB.(2)AB=AF+2EB.【答案】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在△ADC与△ADE中,∵精品文档用心整理∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.资料来源于网络仅供免费交流使用。
一、三角形的概念【知识概述】1.三角形的定义:由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示△ABC中,边:AB,BC,AC 或c,a,b.顶点:A,B,C .内角:∠A ,∠B ,∠C.3.三角形的分类(1) 按角分:①锐角三角形②直角三角形③钝角三角形(2) 按边分:①三等边都不相等的三角形②等腰三角形:底边和腰不相等的等腰三角形,等边三角形二、三角形的边三角形的三边关系:(证明所有几何不等式的唯一方法)(1) 三角形任意两边之和大于第三边:b+c>a(2) 三角形任意两边之差小于第三边:b-c<a【例题精讲】1.下面是小强用三根火柴组成的图形,其中符合三角形概念的是( )2.以下列各组线段的长为边长,能组成三角形的是( )A.2,3,5 B.3,4,5 C.3,5,10 D.4,4,83.一个三角形的三边长分别为4,7,x,那么x的取值范围是( )A.3<x<11 ; B.4<x<7 ; C.-3<x<11 ; D.x>3一个三角形的两边长分别为4,7,最大边长为x,那么x的取值范围是( )A.3<x<11 ; B.7<x<11 ; C.-3<x<11 ; D.x>74.下列说法正确的有( )①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分应分为锐角三角形、直角三角形和钝角三角形.A.①② B.①③④ C.③④ D.①②④5.如图,图中共有________个三角形,在△ABE中,AE所对的角是________,∠ABE所对的边是________;在△ADE中,AD是________的对边;在△ADC中,AD是________的对边.6.用一条长为20cm的绳子围成一个一个等腰三角形(1)如果腰长是底边长的2倍,那么各边长是多少?(2)能围成有一边长是4cm的等腰三角形吗?为什么?7.已知a,b,c是△ABC的三边长。
八年级数学三角形知识点归纳一、与三角形有关的线段1、不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形2、等边三角形:三边都相等的三角形3、等腰三角形:有两条边相等的三角形4、不等边三角形:三边都不相等的三角形5、在等腰三角形中,相等的两边都叫腰,另一边叫底,两腰的夹角叫做顶角,腰与底边的夹角叫做底角6、三角形分类:不等边三角形等腰三角形:底边与腰不等的等腰三角形等边三角形7、三角形两边之与大于第三边,两边之差小于第三边注:1)在实际运用中,只需检验最短的两边之与大于第三边,则可说明能组成三角形2)在实际运用中,已经两边,则第三边的取值范围为:两边之差<第三边<两边之与3)所有通过周长相加减求三角形的边,求出两个答案的,注意检查每个答案能否组成三角形8、三角形的高:从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的高9、三角形的中线:连接△ABC的顶点A与它所对的边BC的中点D,所得线段AD叫做△ABC的边BC上的中线注:两个三角形周长之差为x,则存在两种可能:即可能是第一个△周长大,也有可能是第一个△周长小10、三角形的角平分线:画∠A的平分线AD,交∠A所对的边BC于D,所得线段AD叫做△ABC的角平分线11、三角形的稳定性,四边形没有稳定性二、与三角形有关的角1、三角形内角与定理:三角形三个内角的与等于180度。
证明方法:利用平行线性质2、三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角3、三角形的一个外角等于与它不相邻的两个内角的与4、三角形的一个外角大于与它不相邻的任何一个内角5、三角形的外角与为360度6、等腰三角形两个底角相等三、多边形及其内角与1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形2、N边形:如果一个多边形由N条线段组成,那么这个多边形就叫做N边形。
3、内角:多边形相邻两边组成的角叫做它的内角4、外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角5、对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线6、正多边形:各个角都相等,各条边都相等的多边形叫做正多边形7、多边形的内角与:n边形内角与等于(n-2)*1808、多边形的外角与:360度注:有些题,利用外角与,能提升解题速度9、从n边形的一个顶点出发,可以引n-3条对角线,它们将n 边形分成n-2个△注:探索题型中,一定要注意是否是从N边形顶点出发,不要盲目背诵答案10、从n边形的一个顶点出发,可以引n-3条对角线,n边形共有对角线23)-n(n条。
八年级数学三角形内角和定理的证明●教学目标(一)教学知识点三角形的内角和定理的证明.(二)能力训练要求掌握三角形内角和定理,并初步学会利用辅助线证题,同时培养学生观察、猜想和论证能力.(三)情感与价值观要求通过新颖、有趣的实际问题,来激发学生的求知欲.●教学重点三角形内角和定理的证明.●教学难点三角形内角和定理的证明方法.●教学方法实验、讨论法.●教具准备三角形纸片数张.投影片三张第一张:问题(记作投影片§6.5 A)第二张:实验(记作投影片§6.5 B)第三张:小明的想法(记作投影片§6.5 C)●教学过程Ⅰ.巧设现实情境,引入新课[师]大家来看一机器零件(出示投影片§6.5 A)Ⅱ.讲授新课[师]为了回答这个问题,先观察如下的实验(电脑实验,或实物实验)用橡皮筋构成△ABC,其中顶点B、C为定点,A为动点(如图6-37),放松橡皮筋后,点A自动收缩于BC上,请同学们考察点A变化时所形成的一系列的三角形:△A1BC、△A2BC、△A3BC……其内角会产生怎样的变化呢?图6-37[生甲]当点A离BC越来越近时,∠A越来越接近180°,而其他两角越来越接近于0°.[生乙]三角形各内角的大小在变化过程中是相互影响的.[师]很好.在三角形中,最大的内角有没有等于或大于180°的?[生丙]三角形的最大内角不会大于或等于180°.[师]很好.看实验:当点A远离BC时,∠A越来越趋近于0°,而AB与AC逐渐趋向平行,这时,∠B、∠C逐渐接近为互补的同旁内角.即∠B+∠C→180°.请同学们猜一猜:三角形的内角和可能是多少?[生齐声]180°[师]180°,这一猜测是否准确呢?我们曾做过如下实验:(出示投影片§6.5 B)[师]由实验可知:我们猜对了!三角形的内角之和正好为一个平角.但观察与实验得到的结论,并不一定正确、可靠,这样就需要通过数学证明.那么怎样证明呢?请同学们再来看实验.图6-39这里有两个全等的三角形,我把它们重叠固定在黑板上,然后把三角形ABC的上层∠B 剥下来,沿BC的方向平移到∠ECD处固定,再剥下上层的∠A,把它倒置于∠C与∠ECD之间的空隙∠ACE的上方.这时,∠A与∠ACE能重合吗?[生齐声]能重合.[师]为什么能重合呢?[生齐声]因为同位角∠ECD=∠B.所以CE∥B A.[师]很好,这样我们就可以证明了:三角形的内角和等于180°.接下来同学们来证明:三角形的内角和等于180°这个真命题.这是一个文字命题,证明时需要先干什么呢?[生]需要先画出图形,根据命题的条件和结论,结合图形写出已知、求证.[师]对,下面大家来证明,哪位同学上黑板给大家板演呢?图6-40[生甲]已知,如图6-40,△AB C.求证:∠A+∠B+∠C=180°证明:作BC的延长线CD,过点C作射线CE∥AB.则∠ACE=∠A(两直线平行,内错角相等)∠ECD=∠B(两直线平行,同位角相等)∵∠ACB+∠ACE+∠ECD=180°(1平角=180°)∴∠A+∠B+∠ACB=180°(等量代换)即:∠A+∠B+∠C=180°.[生乙]老师,我的证明过程是这样的:证明:作BC的延长线CD,作∠ECD=∠B.则:EC∥AB(同位角相等,两直线平行)∴∠A=∠ACE(两直线平行,内错角相等)∵∠ACB+∠ACE+∠ECD=180°(1平角=180°)∴∠ACB+∠A+∠B=180°(等量代换)[师]同学们写得证明过程很好,在证明过程中,我们仅仅添画了一条射线CE,使处于原三角形中不同位置的三个角,巧妙地拼凑到一起来了.为了证明的需要,在原来的图形上添画的线叫做辅助线.在平面几何里,辅助线通常画成虚线.我们通过推理的过程,得证了命题:三角形的内角和等于180°是真命题,这时称它为定理.即:三角形的内角和定理.小明也在证明三角形的内角和定理,他是这样想的.大家来议一议,他的想法可行吗?(出示投影片§6.5 C)[生甲]小明的想法可行.因为:∵PQ∥BC(已作)∴∠P AB=∠B(两直线平行,内错角相等)∠QAC=∠C(两直线平行,内错角相等)∵∠P AB+∠BAC+∠QAC=180°(1平角=180°)∴∠B+∠BAC+∠C=180°(等量代换)图6-42[生乙]也可以这样作辅助线.即:作CA的延长线AD,过点A作∠DAE=∠C(如图6-42).[生丙]也可以在三角形的一边上任取一点,然后过这一点分别作另外两边的平行线,这样也可证出定理.图6-43即:如图6-43,在BC上任取一点D,过点D分别作DE∥AB交AC于E,DF∥AC交AB于F.∴四边形AFDE是平行四边形(平行四边形的定义)∠BDF=∠C(两直线平行,同位角相等)∠EDC=∠B(两直线平行,同位角相等)∴∠EDF=∠A(平行四边形的对角相等)∵∠BDF+∠EDF+∠EDC=180°(1平角=180°)∴∠A+∠B+∠C=180°(等量代换)[师]同学们讨论得真棒.接下来我们做练习以巩固三角形内角和定理.Ⅲ.课堂练习(一)课本P196随堂练习1、2.图6-441.直角三角形的两锐角之和是多少度?等边三角形的一个内角是多少度?请证明你的结论.答案:90°60°如图6-44,在△ABC中,∠C=90°∵∠A+∠B+∠C=180°∴∠A+∠B=90°.图6-45如图6-45,△ABC是等边三角形,则:∠A=∠B=∠C.∵∠A+∠B+∠C=180°∴∠A=∠B=∠C=60°图6-462.如图6-46,已知,在△ABC中,DE∥BC,∠A=60°,∠C=70°,求证:∠ADE=50°.证明:∵DE∥BC(已知)∴∠AED=∠C(两直线平行,同位角相等)∵∠C=70°(已知)∴∠AED=70°(等量代换)∵∠A+∠AED+∠ADE=180°(三角形的内角和定理)∴∠ADE=180°-∠A-∠AED(等式的性质)∵∠A=60°(已知)∴∠ADE=180°-60°-70°=50°(等量代换)(二)读一读P197.(三)看课本P195~196,然后小结.Ⅳ.课时小结这堂课,我们证明了一个很有用的三角形内角和定理.证明的基本思想是:运用辅助线将原三角形中处于不同位置的三个内角集中在一起,拼成一个平角.辅助线是联系命题的条件和结论的桥梁,今后我们还要学习它.Ⅴ.课后作业(一)课本P198习题6.6 1、2(二)1.预习内容P199~2002.预习提纲(1)三角形内角和定理的推论是什么?(2)三角形内角和定理的推论的应用.Ⅵ.活动与探究1.证明三角形内角和定理时,是否可以把三角形的三个角“凑”到BC边上的一点P?(如图6-47(1)),如果把这三个角“凑”到三角形内一点呢?(如图6-47(2))“凑”到三角形外一点呢?(如图6-47(3)),你还能想出其他证法吗?(1)(2)(3)图6-47[过程]让学生在证明这个题的过程中,进一步了解三角形内角和定理的证明思路,并且了解一题的多种证法,从而拓宽学生的思路.[结果]证明三角形内角和定理时,既可以把三角形的三个角“凑”到BC边上的一点P,也可以把三个角“凑”到三角形内一点;还可以把这三个角“凑”到三角形外一点.证明略.●板书设计。
新北师大版八年级数学下册知识点总结XXX版八年级数学下册各章知识要点总结第一章三角形的证明一、全等三角形的判定和性质:判定方法:SSS、SAS、ASA、AAS、HL(直角三角形)对应边相等,对应角相等二、等腰三角形的性质和判定:有两边相等,底角相等等腰三角形的顶角平分线、底边中线和高线互相重合等边三角形的各角相等,每个角都等于60°判定方法:等角对等边三、直角三角形的性质和判定:两锐角互余直角边平方和等于斜边平方锐角等于30°的直角三角形,直角边等于斜边的一半斜边上的中线等于斜边的一半判定方法:三边平方和相等四、线段的垂直平分线和角平分线:垂直平分线上的点到两个端点的距离相等三角形三条边的垂直平分线相交于一点,这个点到三个顶点的距离相等(外心)角平分线上的点到两边距离相等三角形三条角平分线相交于一点,这个点到三条边的距离相等(内心)第二章一元一次不等式和一元一次不等式组本章主要介绍一元一次不等式和一元一次不等式组的概念、性质和解法。
一、一元一次不等式的概念和性质:形如ax+b0)的不等式称为一元一次不等式解不等式的基本方法是移项、化简、分段讨论不等式的解集可以用区间表示二、一元一次不等式的解法:通过移项将不等式化为ax)b的形式根据a的正负性和不等式符号确定解集的范围判断解集的开闭性和无解情况三、一元一次不等式组的概念和性质:形如ax+by)和dx+ey>f(或<)的不等式组称为一元一次不等式组解不等式组的基本方法是联立、消元、分段讨论不等式组的解集可以用平面区域表示四、一元一次不等式组的解法:通过联立将不等式组化为标准形式根据系数的正负性和不等式符号确定解集的范围判断解集的开闭性和无解情况总之,本章内容涵盖了三角形的证明和一元一次不等式及其组的解法,是初中数学中重要的基础知识。
定义:不等式是用符号“<”(或“≤”),“>”(或“≥”)连接的式子。
基本性质:不等式的两边都加(或减)同一个整式,不等号的方向不变;不等式的两边都乘(或除以)同一个正数,不等号的方向不变;不等式的两边都乘(或除以)同一个负数,不等号的方向改变。
第一章三角形的证明※知识点1 全等三角形的判定及性质判定定理简称判定定理的内容性质SSS三角形分别相等的两个三角形全等全等三角形对应边相等、对应角相等SAS两边及其夹角分别相等的两个三角形全等ASA两角及其夹边分别相等的两个三角形全等AAS两角分别相等且其中一组等角的对边相等的两个三角形全等※知识点2 等腰三角形的性质定理及推论内容几何语言条件与结论等腰三角形的性质定理等腰三角形的两底角相等。
简述为:等边对等角在△ABC中,若AB=AC,则∠B=∠C条件:边相等,即AB=AC结论:角相等,即∠B=∠C推论等腰三角形在△ABC,A条件:等腰三角顶角的平分线、底边上的中线及底边上的高线互相垂直,简述为:三线合一B=AC,AD⊥BC,则AD是BC边上的中线,且AD平分∠BAC形中一直顶点的平分线,底边上的中线、底边上的高线之一结论:该线也是其他两线※等腰三角形中的相等线段:1.等腰三角形两底角的平分线相等2.等腰三角形两腰上的高相等3.两腰上的中线相等4.底边的中点到两腰的距离相等※知识点3 等边三角形的性质定理内容性质定理等边三角形的三个内角都相等,并且每个角都等于60度解读【要点提示】1)等边三角形是特殊的等腰三角形。
它具有等腰三角形的一切性质2)等边三角形每条边上的中线、高线和所对角的平分线“三线合一”【易错点】所有的等边三角形都是等腰三角形,但不是所有的等腰三角形都是等边三角形※知识点4 等腰三角形的判定定理内容几何语言条件与结论等腰三角形的判定定理有两个角相等的三角形是等腰三角形,简述为:等校对等边在△ABC中,若∠B=∠C则AC=BC条件:角相等,即∠B=∠C结论:边相等,即AB=AC解读【注意】对“等角对等边”的理解仍然要注意,他的前提是“在同一个三角形中”拓展判定一个三角形是等腰三角形有两种方法(1)利用等腰三角形;(2)利用等腰三角形的判定定理,即“等角对等边”※知识点5 反证法概念证明的一般步骤反证法在证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立,这种证明方法称为反证法(1)假设命题的结论不成立(2)从这个假设出发,应用正确的推论方法,得出与定义、基本事实、已有定理或已知条件相矛盾的结果(3)由矛盾的结果判定假设不正确,从而肯定原命题正确解读【要点提示】(1)当一个命题涉及“一定”“至少”“至多”“无限”“唯一”等情况时,由于结论的反面简单明确,常常用反证法来证明(2)“推理”必须顺着假设的思路进行,即把假设当作已知条件,“得出矛盾”是指推出与定义、基本事实、已有定理或已知条件相矛盾的结果第二章一元一次不等式与一元一次不等式组一. 不等关系※1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式※2. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数<===> 大于等于0(≥0) <===> 0和正数<===> 不小于0非正数<===> 小于等于0(≤0) <===> 0和负数<===> 不大于0二. 不等式的基本性质※1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即:如果a>b,并且c>0,那么ac>bc,(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc, < span=""></bc, <>※2. 比较大小:(a、b分别表示两个实数或整式)一般地:如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;如果a<b,那么a-b是负数;反过来,如果a-b是正数,那么a<b;< span=""></b,那么a-b是负数;反过来,如果a-b是正数,那么a<b;<>即:a>b <===> a-b>0a=b <===> a-b=0a a-b<0三. 不等式的解集:※1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式。
三角形的证明【基础知识】1、全等三角形(1)定义: 能够完全 的三角形是全等三角形。
(2)性质:全等三角形的 、 相等。
(3)判定:“SAS ”、 、 、 、 。
三边 :边边边(SSS ) 两边: 边角边(SAS )一边 边角边(ASA ) 角角边(AAS )※※注:SSA,AAA 不能作为判定三角形全等的方法,判定两个三角形全等时,必须有边的参与,若有两边一角相等时,角必须是两边的夹角 ※※证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 注意:公共边、公共角、对顶角、最长的边(或最大的角)、最短的边(或最小的角)2、等腰三角形(1)定义:有两条 的三角形是等腰三角形。
(2)性质:①等腰三角形的 相等。
(“等边对等角”)②等腰三角形的顶角平分线、 、 互相重合。
(3)判定:①定义②“ ”3、等边三角形(1) 定义: 的三角形是等边三角形。
(2)性质:①三角都等于②具有等腰三角形的一切性质。
(3)判定:①定义②三个角都相等的三角形是等边三角形③有一个角 是等边三角形。
4、线段的垂直平分线(1)线段的垂直平分线上的点到这条线段的两个端点的距离相等(2)到一条线段两个端点距离相等的点,在这条线段的垂直平分线上5、角平分线(1)角平分线上的点到这个叫的两边的距离相等(2) 在一个角的内部,到角的两边距离相等的点在这个角的平分线上6、直角三角形(1)定理:在直角三角形中,如果一个锐角是30度,那么它所对的直角边等于斜边的一半。
(2)勾股定理及其逆定理直角三角形两条直角边的平方和等于斜边的平方如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形 (3)“斜边、直角边”或“HL ”直角三角形全等的判定定理:斜边和一条直角边分别相等的两个直角三角形全等 定理的作用:判定两个直角三角形全等【巩固训练】1、△ABC 中,∠A ∶∠B ∶∠C=1∶2∶3,最小边BC=4 cm ,最长边AB 的长是( ) A.5 cm B.6 cm C.5 cmD.8 cm2、△ABC 中,AB=AC ,BD 平分ABC 交AC 边于点D ,∠BDC=75°,则∠A 的度数为 ( )A. 35°B. 40°C. 70°D. 110°3、△ABC 中,∠A ∶∠B ∶∠C=1∶2∶3,CD ⊥AB 于点D 若BC=a ,则AD 等于( )A.21a B.23a C.23a D.3a 4、到△ABC 的三个顶点距离相等的点是△ABC 的 ( ) A.三边中线的交点 B.三条角平分线的交点 C.三边上高的交点 D.三边中垂线的交点5、如左下图所示,在Rt △ABC 中,∠C=90°,∠CAB=60°,AD 平分∠CAB ,点D 到AB 的距离DE=3.8cm ,则线段BC 的长为( )A 、3.8cmB 、7.6cmC 、11.4cmD 、11.2cmy6、如右上图,在等边ABC ∆中,,D E 分别是,BC AC 上的点,且BD CE =,AD 与BE 相交于点P ,则12∠+∠的度数是( )A .045B .055C .060D .0757、如左下图,123,,l l l 表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有( ).A .1处B .2处C .3处D .4处8、如右上图,已知ABC △中,45ABC ∠=,4AC =,H 是高AD 和BE 的交点,则线段BH 的长度为( ) A .6B .4C .23D .59、(2012随州)等腰三角形的周长为16,其一边长为6,则另两边为_______________。
数学八年级下册全册知识点汇总(北师大版)第一章三角形的证明一、全等三角形判定、性质:1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)2.全等三角形的对应边相等、对应角相等。
二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。
(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;三、等腰三角形的判定1. 有关的定理及其推论定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。
)推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
2. 反证法:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
这种证明方法称为反证法四、直角三角形1、直角三角形的性质直角三角形的两锐角互余直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。
2、直角三角形判定如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.五、线段的垂直平分线、角平分线1、线段的垂直平分线。
性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
知识点一全等三角形的性质及判定1、全等三角形的对应边相等、对应角相等。
2、判定两三角形全等的方法有:SSS、SAS、AAS、ASA、HL。
例:如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?知识点二等腰三角形的性质和判定1、等腰三角形的两个底角相等(简称“等边对等角”)2、等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合,简称“三线合一”。
3、等腰三角形两腰上的中线、两腰上的高、两底角的平分线长度均相等。
4、有两个角相等或两条边相等的三角形是等腰三角形。
例:已知等腰三角形一腰上的高与另一腰的夹角是50º,则这个等腰三角形的底角是。
例:在等腰三角形ABC中,AB=AC,一腰上的中线BD将这个三角形周长分为15和12两部分,则这个等腰三角形的底边长。
例:如图,在ABA 1中,∠B=20º,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C 上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,∠A n的度数为。
知识点三等边三角形的性质和判定1、三条边都相等的三角形是等边三角形。
2、三个角都相等,且都等于60º.3、有一个角等于60º的等腰三角形是等边三角形;三个角或三条边都相等的三角形是等边三角形。
例:如右图,已知△ABC和△BDE都是等边三角形,求证:AE=CD.M C B A 例:如图1,已知:∠MON=30º,点A 1、A 2、A 3……在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=1,则△A 6B 6A 7的边长为 .图1 图2例:如图2,在等边△ABC 中,D 是边AC 上一点,连接BD ,将△BCD 绕点B 逆时针旋转60º,得到△BAE ,连接ED ,若BC=10,BD=9,则△AED 的周长是 。
第一节. 等腰三角形
1. 性质:等腰三角形的两个底角相等(等边对等角).
2. 判定:有两个角相等的三角形是等腰三角形(等角对等边).
3. 推论:等腰三角形顶角的平分线、底边上的中线、底边上的高线互相重合(即“三线合一”).
4. 等边三角形的性质及判定定理
性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形是轴对称图形,有3条对称轴.
判定定理:(1)有一个角是60°的等腰三角形是等边三角形;
(2)三个角都相等的三角形是等边三角形.
第二节.直角三角形
1. 勾股定理及其逆定理
定理:直角三角形的两条直角边的平方和等于斜边的平方.
逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.
2. 含30°的直角三角形的边的性质
定理:在直角三角形中,如果一个锐角等于30°,那么它所对应的直角边等于斜边的一半.
3.直角三角形斜边上的中线等于斜边的一半。
要点诠释:勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.
4.斜边和一条直角边分别相等的两个直角三角形全等。
第三节. 线段的垂直平分线
1. 线段垂直平分线的性质及判定
性质:线段垂直平分线上的点到这条线段两个端点的距离相等.
判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.
2.三角形三边的垂直平分线的性质
三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.该点就是三角形的外心。
以此外心为圆心,可以将三角形的三个顶点组成一个圆。
3.如何用尺规作图法作线段的垂直平分线:
分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN就是线段AB 的垂直平分线。
第四节. 角平分线
1. 角平分线的性质及判定定理
性质:角平分线上的点到这个角的两边的距离相等;
判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.
2. 三角形三条角平分线的性质定理
性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.这个点叫内心
通用篇
1.真命题与假命题
真命题:真命题就是正确的命题,即如果命题的条件成立,那么结论一定成立。
假命题:条件和结果相矛盾的命题是假命题,
命题与逆命题
命题包括已知和结论两部分;逆命题是将原命题的已知和结论交换;
在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题。
其中一个命题称为另一个命题的逆命题。
一个命题是真命题,它的逆命题不一定是真命题。
如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,其中一个定理称为另一个定理的逆定理。
这两个定理称为互逆定理。
2、证明命题的一般步骤:
(1)理解题意:分清命题的条件(已知),结论(求证);
(2)根据题意,画出图形;
(3)结合图形,用数学语言写出“已知”和“求证”;
(4)分析题意,探索证明思路(由“因”导“果”,执“果”索“因“
(5)依据思路,运用数学语言条理清晰地写出证明过程;
(6)检查表达过程是否正确,完整.
3、用反证法证明几何命题的步骤:
(1)假设命题的结论不成立.
(2)由假设作为条件,根据已知条件及学过的定义、定理、公理进行逐步的推导直至与假设或与某个己知条件或与学过的某个定义、定理、公理出现矛盾.
(3)从而判断假设错误,原命题成立。