圆轴扭转应力
- 格式:doc
- 大小:256.50 KB
- 文档页数:8
130一、讨论圆轴扭转时的应力状态,并分析铸铁试件受扭时的破坏现象。
解 根据第十九章讨论,圆轴扭转时,在横截面的边缘处剪应力最大,其数值为:n n W M=τ (e )在圆轴的最外层,按图22-5(a ),所示方式取出单元体ABCD ,单元体各面上的应力如图22-5(b )所示。
在这种情况下,ττσσ===xy y x ,0 (f )单元体侧面上只有剪应力作用,而无正应力作用的这种应力状态称为纯剪切应力状态。
把(f )式代入公式(22-6)得:min maxσσ ττσσσσ±=+-±+=22)2(2xy y x y x 由公式(22-5):yx xytg σστα--=220 →∞-所以 2709020--=或α450-=α 或 1350-=α以上结果表明,从x 轴量起,由 450-=α(顺时针方向)所确定的主平面上的主应力为max σ;而由 1350-=α所确定的主平面上的主应力为min σ。
按照主应力的记号规定:τσσστσσ-=====min 32max 10所以,纯剪切是二向应力状态,两个主应力的绝对值相等,都等于剪应力τ,但一个为拉应力,一个为压应力。
圆截面铸铁试件扭转时,表面各点max σ所在的主平面联成倾角为︒45的螺旋面[图22-5(a )]。
由于铸铁抗拉强度较低,试件将沿这一螺旋面因拉伸而发生断裂破坏,如(a )(c ) 图22-5131图22-5(c )所示。
二、 图22-6(a )所示为一横力弯曲下的梁,求得截面m -n 上的弯矩M 及剪力Q 后,算出截面上一点A 处弯曲正应力和剪应力分别为:MPa MPa 50,70=-=τσ[图22-6(b )]试确定A 点处的主应力及主平面的方位,并讨论同一横截面上其它点处的应力状态。
解 把从A 点处截取的单元体放大如图22-6(c )所示。
选定x 轴的方向垂直向上,则0=x σ MPa y 70-=σ MPa xy 50-=τ由公式(22-5)得: 429.1)70(0)50(2220=----=--=yx xytg σστα︒=5520α或︒235 ︒=5.270α或︒5.117从x 轴量起,按逆时针方向量取的角度︒5.27,确定max σ所在主平面,以同一方向量取的角度,5.117︒确定min σ所在的另一主平面。