线性代数 5-1 第5章1讲-特征值与特征向量(1)
- 格式:pptx
- 大小:639.31 KB
- 文档页数:12
【关键字】学习第五章矩阵的特征值与特征向量一.内容提要1 . 特征值和特征向量定义1 设是数域P上的n阶矩阵,若对于数域P中的数,存在数域P上的非零n维列向量X,使得则称为矩阵A的特征值,称X为矩阵A属于(或对应于)特征值的特征向量注意:1)是方阵;2)特征向量X 是非零列向量;3)方阵与特征值对应的特征向量不唯一4)一个特征向量只能属于一个特征值.2.特征值和特征向量的计算计算矩阵A的特征值与特征向量的步骤为:(1)计算n阶矩阵A的特征多项式|E-A|;(2)求出特征方程|E-A|=0的全部根,它们就是矩阵A的全部特征值;(3)设1 ,2 ,… ,s 是A的全部互异特征值。
对于每一个i,解齐次线性方程组0,求出它的一个根底解系,该根底解系的向量就是A属于特征值i的线性无关的特征向量,方程组的全体非零解向量就是A属于特征值i的全体特征向量.3.特征值和特征向量的性质性质1 (1)若X是矩阵A属于特征值的特征向量,则kX()也是A属于的特征向量;(2)若是矩阵A属于特征值的特征向量,则它们的非零线性组合也是A属于的特征向量;(3)若A是可逆矩阵,是A的一个特征值,则是A—1的一个特征值,是A*的一个特征值;(4)设是n阶矩阵A的一个特征值,f(x)= amxm + am-1xm-1 + … + a1x + a0为一个多项式,则是f(A)的一个特征值。
性质2(1)(2)性质3 n阶矩阵A和它的转置矩阵有相同的特征值性质4 n阶矩阵A 不同的特征值所对应的特征向量线性无关4. 相似矩阵定义2 设A、B为n阶矩阵,若存在可逆矩阵P,使得B=P―1AP则称A与B相似。
记作A∽B. 并称P为相似变换矩阵.矩阵的相似关系是等价关系,满足:1°反身性:A∽A.2°对称性:若A∽B,则B∽A.3°传递性:若A∽B,B∽C则A∽C.5.矩阵相似的性质:设A、B为n阶矩阵,若A∽B,则(1) ; (2) ;(3)A 、B 有相同的迹和特征多项式,相同的特征值;(4) A ,B 或者都可逆或者都不可逆. 当A ,B 都可逆时,∽;(5)设f (x )= amxm + am-1xm-1 + … + a1x + a0 为一个多项式,则 f (A )∽ f (B ) ; 6.n 阶矩阵A 相似对角化的条件(1)n 阶矩阵A 与对角矩阵Λ相似的充分必要条件是A 有n 个线性无关的特征向量. (2)n 阶矩阵A 与对角阵相似的充要条件是A 的每个k 重特征值恰好对应有k 个线性无关的特征向量.注(1)与单位矩阵相似的 n 阶矩阵只有单位阵 E 本身,与数量矩阵 kE 相似的 n 阶方阵只有数量矩阵 kE 本身(2)有相同特征多项式的矩阵不一定相似。
线性代数知识点总结(第5章)(一)矩阵的特征值与特征向量1、特征值、特征向量的定义:设A为n阶矩阵,如果存在数λ及非零列向量α,使得Aα=λα,称α是矩阵A属于特征值λ的特征向量。
2、特征多项式、特征方程的定义:|λE-A|称为矩阵A的特征多项式(λ的n次多项式)。
|λE-A |=0称为矩阵A的特征方程(λ的n次方程)。
注:特征方程可以写为|A-λE|=03、重要结论:(1)若α为齐次方程Ax=0的非零解,则Aα=0·α,即α为矩阵A特征值λ=0的特征向量(2)A的各行元素和为k,则(1,1,…,1)T为特征值为k的特征向量。
(3)上(下)三角或主对角的矩阵的特征值为主对角线各元素。
△4、总结:特征值与特征向量的求法(1)A为抽象的:由定义或性质凑(2)A为数字的:由特征方程法求解5、特征方程法:(1)解特征方程|λE-A|=0,得矩阵A的n个特征值λ1,λ2,…,λn注:n次方程必须有n个根(可有多重根,写作λ1=λ2=…=λs=实数,不能省略)(2)解齐次方程(λi E-A)=0,得属于特征值λi的线性无关的特征向量,即其基础解系(共n-r(λi E-A)个解)6、性质:(1)不同特征值的特征向量线性无关(2)k重特征值最多k个线性无关的特征向量1≤n-r(λi E-A)≤k i(3)设A的特征值为λ1,λ2,…,λn,则|A|=Πλi,Σλi=Σa ii(4)当r(A)=1,即A=αβT,其中α,β均为n维非零列向量,则A的特征值为λ1=Σa ii=αTβ=βTα,λ2=…=λn=0(5)设α是矩阵A属于特征值λ的特征向量,则(二)相似矩阵7、相似矩阵的定义:设A、B均为n阶矩阵,如果存在可逆矩阵P使得B=P-1AP,称A与B相似,记作A~B8、相似矩阵的性质(1)若A与B相似,则f(A)与f(B)相似(2)若A与B相似,B与C相似,则A与C相似(3)相似矩阵有相同的行列式、秩、特征多项式、特征方程、特征值、迹(即主对角线元素之和)【推广】(4)若A与B相似,则AB与BA相似,A T与B T相似,A-1与B-1相似,A*与B*也相似(三)矩阵的相似对角化9、相似对角化定义:如果A与对角矩阵相似,即存在可逆矩阵P,使得P-1AP=Λ=,称A可相似对角化。
线性代数中的特征值与特征向量特征值和特征向量是线性代数中的重要概念,广泛应用于物理、经济、计算机科学等领域。
本文将介绍特征值和特征向量的定义、性质以及其在矩阵对角化和特征分解中的应用。
一、特征值与特征向量的定义在线性代数中,给定一个 n×n 的矩阵 A,我们称零向量v≠0 是矩阵A 的特征向量,如果存在一个实数λ,使得Av=λv。
特征值λ 是使得上述等式成立的实数。
特征向量与特征值是成对出现的,每个特征向量都有一个对应的特征值。
二、特征值与特征向量的性质1. 特征值与特征向量的数目相等对于一个 n×n 的矩阵 A,它最多能有 n 个线性无关的特征向量。
而特征值也最多有n 个。
一个特征值可以对应多个线性无关的特征向量。
2. 特征向量的积性质如果 v 是 A 的特征向量,那么对于任意实数 c,cv 也是 A 的特征向量,且特征值保持不变。
3. 特征向量的加性质如果 v1 和 v2 是 A 的特征向量,对应相同的特征值λ,那么 v1+v2也是 A 的特征向量,对应特征值λ。
三、特征值与特征向量的计算要计算一个矩阵的特征值和特征向量,我们需要求解方程Av=λv。
1. 寻找特征值对于一个 n×n 的矩阵 A,我们需要求解行列式 |A-λI|=0 的根,其中I 是 n 阶单位矩阵。
这样可以得到 A 的特征值。
2. 寻找特征向量对于每个特征值λ,我们需要求解方程组 (A-λI)v=0,其中 v 是特征向量。
解这个齐次方程组可以得到 A 的特征向量。
四、特征值与特征向量的应用1. 矩阵对角化如果一个 n×n 的矩阵 A 有 n 个线性无关的特征向量,那么可以找到对角矩阵 D 和可逆矩阵 P,使得 P^{-1}AP=D。
对角矩阵 D 中的对角元素就是特征值,P 中的列向量就是对应的特征向量。
2. 特征分解对于一个对称矩阵 A(A=A^T),可以进行特征分解,表示为A=QΛQ^T,其中 Q 是由 A 的特征向量组成的正交矩阵,Λ 是对角矩阵,其对角元素是 A 的特征值。
线性代数特征值与特征向量特征值与特征向量是线性代数中的重要概念,广泛应用于各个领域。
在本文中,我们将详细介绍特征值与特征向量的定义、性质以及应用。
一、特征值与特征向量的定义在线性代数中,给定一个n阶方阵A,如果存在一个非零向量v使得满足以下等式:Av = λv其中,v称为A的特征向量,λ称为A的特征值。
特征值与特征向量始终成对出现,不同特征向量对应的特征值可以相同,也可以不同。
二、特征值与特征向量的性质1. 特征向量的性质(1)特征向量可以进行线性组合。
即若v1和v2是矩阵A相应于特征值λ的特征向量,那么c1v1 + c2v2也是矩阵A相应于λ的特征向量(其中c1和c2为常数)。
(2)特征向量的数量最多为n。
对于一个n阶方阵A,它最多有n个线性无关的特征向量。
2. 特征值的性质(1)特征值具有可加性。
对于矩阵A和B,相应的特征值分别是λ1和μ1,那么A+B的特征值为λ1+μ1。
(2)特征值具有可乘性。
对于矩阵A和B,相应的特征值分别是λ1和μ1,那么A·B的特征值为λ1·μ1。
三、特征值与特征向量的求解方法特征值与特征向量的求解是通过解方程Av = λv来实现的。
常见的求解方法有以下两种:1. 特征方程法将Av = λv转化为(A-λI)v = 0,求解矩阵(A-λI)的零空间,即可得到特征向量v,然后代入Av = λv中求解λ。
2. 列主元法通过高斯消元法将矩阵A转化为上三角矩阵U,求解Ux = 0的基础解系,其中x即为特征向量,对应的主对角线元素即为特征值。
四、特征值与特征向量的应用特征值与特征向量在许多领域都有广泛的应用,以下是其中几个典型的应用案例:1. 矩阵对角化通过找到一个可逆矩阵P,使得P^-1AP = D,其中D是一个对角矩阵,对角线上的元素即为A的特征值。
矩阵对角化可以简化矩阵的运算,提高计算效率。
2. 矩阵压缩在图像处理和数据压缩中,特征值与特征向量可以用来进行矩阵的压缩。