高中数学函数题型及解题技巧
- 格式:docx
- 大小:10.56 KB
- 文档页数:2
高中函数题型及解题方法高中数学中,函数是一个非常重要的概念,也是学生们比较头疼的一个知识点。
函数题型的考察也是比较灵活多样的,下面我们就来系统地总结一下高中函数题型及解题方法。
一、基本函数题型。
1.函数的定义和性质题型。
这类题型主要考察对函数定义和性质的理解,学生需要掌握函数的定义、定义域、值域、奇偶性、周期性等基本性质。
解题方法是根据函数的具体性质,进行逻辑推理和数学运算,得出题目要求的结论。
2.函数的图像和性质题型。
这类题型主要考察对函数图像和性质的理解,学生需要掌握函数图像的基本特征、对称性、单调性、极值点、拐点等性质。
解题方法是根据函数图像的特点,进行分析和推理,得出题目要求的结论。
3.函数的运算题型。
这类题型主要考察对函数的运算和复合的理解,学生需要掌握函数的加减乘除、复合函数、反函数等运算规则。
解题方法是根据函数运算的性质,进行逻辑推理和数学运算,得出题目要求的结果。
二、综合函数题型。
1.函数的应用题型。
这类题型主要考察对函数的实际应用的理解,学生需要掌握函数在各个领域的具体应用,如经济学、物理学、生物学等。
解题方法是根据具体问题,建立函数模型,进行分析和推理,得出问题的解决方案。
2.函数方程题型。
这类题型主要考察对函数方程的解法和应用的理解,学生需要掌握函数方程的求解方法和应用技巧。
解题方法是根据函数方程的具体形式,进行分析和推理,得出方程的解或满足条件的函数形式。
三、解题方法。
1.理清思路,明确目标。
在解函数题型时,首先要理清思路,明确题目要求的目标,分析题目中给出的条件和限制,明确解题的方向和方法。
2.运用函数的基本性质。
在解题过程中,要灵活运用函数的基本性质,如定义、图像、运算规则等,根据题目的具体要求,进行逻辑推理和数学运算。
3.建立函数模型,进行分析。
对于应用题型,要善于建立函数模型,将实际问题转化为数学问题,进行逻辑分析和推理,得出问题的解决方案。
4.多做练习,掌握技巧。
高一函数零点题型归纳函数零点是高中数学中的一个重要概念,它涉及到函数的值、图像、单调性等多个方面。
以下是高一函数零点的一些常见题型及其解题方法:一、判断零点个数例题:函数f(x) = x^{2} - 2xf(x)=x2−2x在区间( - 3,3)(−3,3)内的零点个数为( )A.0 B.11 C.22 D.33解析:首先确定函数的对称轴为x = 1x=1,然后判断函数的开口方向为向上。
接下来,根据对称轴和区间端点的距离,可以确定函数在区间内的零点个数。
二、求函数的零点例题:函数f(x) = \log_{2}(x - 3)f(x)=log2(x−3)的零点是( )A.22 B.33 C.44 D.55解析:对数函数的零点即为使对数内部表达式等于1的x值。
因此,令x - 3 = 1x−3=1,解得x = 4x=4。
三、判断零点所在区间例题:函数f(x) = x^{3} - x^{2} - xf(x)=x3−x2−x在区间( - 1,2)(−1,2)内的一个零点所在的区间是( )A.(0,1)(0,1) B.(1,2)(1,2) C.( - 1,0)(−1,0) D.(0,2)(0,2)解析:先确定函数在给定区间端点的函数值,然后判断其正负性。
如果端点函数值异号,则该区间内必存在零点。
四、应用题中的零点问题例题:某商品的成本价为每件30元,售价不超过50元时,售价y(元)与售价的整数部分x 满足关系式:y = x + 20y=x+20,当成本价与售价相等时,每月最多可售出该商品____件。
解析:根据题意,当成本价与售价相等时,即30 = x + 2030=x+20,解得x = 10x=10。
由于售价的整数部分为10,则售价为30元。
再根据一次函数的性质,当斜率大于0时,函数单调递增,因此每月最多可售出该商品33件。
五、判断函数是否为同一函数(根据零点个数)例题:下列四个函数中与函数f(x) = \frac{1}{x}f(x)=x1表示同一函数的是( )A.y = \frac{x^{2}}{x}y=xx2B.y = \frac{1}{\sqrt{x}}y=x1C.y = \frac{1}{\log_{a}x}y=logax1D.y = \frac{e^{x}}{x}y=xex解析:根据函数的三要素(定义域、值域、对应关系),分别判断各选项是否与给定函数定义域相同、值域相同以及对应关系相同。
高中函数题型及解题方法高中数学中,函数是一个非常重要的概念,也是学生们比较头疼的一个知识点。
函数题型在高考中占据了相当大的比重,因此掌握函数的相关知识和解题方法对于学生来说是非常重要的。
本文将针对高中函数题型及解题方法进行详细介绍,希望能够帮助学生们更好地理解和掌握函数的相关知识。
一、基本概念。
在学习函数的题型和解题方法之前,首先需要对函数的基本概念有一个清晰的认识。
函数是一个特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素上。
函数通常用f(x)来表示,其中x是自变量,f(x)是因变量。
函数的定义域、值域、奇偶性、单调性等概念也是学习函数题型的重点内容。
二、常见题型及解题方法。
1. 函数的性质题。
这类题型主要考察对函数的性质的理解和掌握程度,包括奇偶性、单调性、最值等。
解题方法主要是通过对函数图像的分析和导数的运算来确定函数的性质。
2. 函数的运算题。
函数的运算题主要考察对函数的基本运算和复合函数的理解,包括函数的加减乘除、复合函数等。
解题方法主要是根据函数的定义进行运算,注意化简和合并同类项。
3. 函数方程题。
函数方程题主要考察对函数方程的解法和函数图像的性质分析。
解题方法主要是根据方程的特点进行分类讨论,通过代数和图像的方法解题。
4. 函数的应用题。
函数的应用题是高中数学中比较常见的题型,主要考察对函数的应用和解决实际问题的能力。
解题方法主要是通过建立函数模型,利用函数的性质解决实际问题。
三、解题技巧。
1. 熟练掌握函数的基本性质和运算法则,对于函数的定义域、值域、奇偶性、单调性等要有清晰的认识。
2. 多画函数的图像,通过观察函数的图像来理解函数的性质和解题方法。
3. 多做函数题的练习,掌握不同类型函数题的解题技巧和方法。
4. 注意函数题与实际问题的结合,理解函数在实际问题中的应用。
总结。
通过对高中函数题型及解题方法的介绍,希望能够帮助学生们更好地掌握函数的相关知识和解题方法。
高中函数题型及解题方法高中数学中,函数是一个非常重要的概念,也是学生们比较头疼的一个知识点。
函数题型在高考中占据着相当大的比重,因此熟练掌握函数的相关知识和解题方法对于高中生来说至关重要。
下面我们就来系统地总结一下高中函数题型及解题方法。
一、基本函数题型。
1. 一次函数。
一次函数是高中阶段最基础的函数之一,其函数表达式为y=kx+b,其中k和b分别代表斜率和截距。
一次函数的图像是一条直线,因此在解题时需要掌握直线的性质和相关的解题技巧,如求斜率、求截距、求交点等。
2. 二次函数。
二次函数是高中阶段比较常见的函数之一,其函数表达式为y=ax^2+bx+c,其中a不等于0。
二次函数的图像是抛物线,因此在解题时需要掌握抛物线的性质和相关的解题技巧,如求顶点、求零点、求对称轴等。
3. 指数函数。
指数函数是以a(a大于0且不等于1)为底的幂函数,其函数表达式为y=a^x。
指数函数的图像是一条逐渐增长或逐渐减小的曲线,因此在解题时需要掌握指数函数的增减性、奇偶性和相关的解题技巧,如求定义域、值域、解不等式等。
4. 对数函数。
对数函数是指数函数的反函数,其函数表达式为y=loga(x)。
对数函数的图像是一条渐进于x轴的曲线,因此在解题时需要掌握对数函数的性质和相关的解题技巧,如求定义域、值域、解不等式等。
二、解题方法。
1. 分析题目。
在解函数题型的题目时,首先要仔细阅读题目,分析题目中所给的条件和要求,理清思路,确定解题的方法和步骤。
2. 列出方程。
根据题目所给的条件,可以列出相应的函数方程,如一次函数的斜率截距形式、二次函数的标准形式、指数函数的幂函数形式、对数函数的指数形式等。
3. 运用函数性质。
根据函数的性质和特点,运用相关的定理和公式,解决问题。
比如利用一次函数的斜率求交点坐标,利用二次函数的顶点求最值,利用指数函数的增减性解不等式,利用对数函数的性质求解方程等。
4. 综合运用。
有些函数题目可能需要综合运用多种函数的性质和解题方法,因此在解题时需要综合考虑,灵活运用各种方法,找到最优解。
高中数学第四章指数函数与对数函数解题方法技巧单选题1、已知函数f (x )是奇函数,当x >0时,f (x )=2x +x 2,则f (2)+f (−1)=( ) A .11B .5C .−8D .−5 答案:B分析:利用奇函数的定义直接计算作答. 奇函数f (x ),当x >0时,f (x )=2x +x 2,所以f (2)+f (−1)=f(2)−f(1)=22+22−(21+12)=5. 故选:B2、Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I(t)=K 1+e −0.23(t−53),其中K 为最大确诊病例数.当I (t ∗)=0.95K 时,标志着已初步遏制疫情,则t ∗约为( )(ln19≈3)A .60B .63C .66D .69 答案:C分析:将t =t ∗代入函数I (t )=K1+e −0.23(t−53)结合I (t ∗)=0.95K 求得t ∗即可得解. ∵I (t )=K1+e −0.23(t−53),所以I (t ∗)=K1+e −0.23(t ∗−53)=0.95K ,则e 0.23(t ∗−53)=19,所以,0.23(t ∗−53)=ln19≈3,解得t ∗≈30.23+53≈66.故选:C.小提示:本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.3、已知函数f(x)={a x ,x <0(a −2)x +3a,x ≥0,满足对任意x 1≠x 2,都有f (x 1)−f (x 2)x 1−x 2<0成立,则a 的取值范围是( )A .a ∈(0,1)B .a ∈[,1)C .a ∈(0,13]D .a ∈[,2)答案:C分析:根据条件知f(x)在R 上单调递减,从而得出{0<a <1a −2<03a ≤1,求a 的范围即可.3434∵f(x)满足对任意x1≠x2,都有f(x1)−f(x2)x1−x2<0成立,∴f(x)在R上是减函数,∴{0<a<1 a−2<0(a−2)×0+3a≤a0,解得0<a≤13,∴a的取值范围是(0,13].故选:C.4、中国茶文化博大精深,某同学在茶艺选修课中了解到,茶水的口感与茶叶类型和水的温度有关,某种绿茶用80℃左右的水泡制可使茶汤清澈明亮,营养也较少破坏.为了方便控制水温,该同学联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是θ1℃,环境温度是θ0℃,则经过t分钟后物体的温度θ℃将满足θ=θ0+(θ1−θ0)e−kt,其中k是一个随着物体与空气的接触状况而定的正常数.该同学通过多次测量平均值的方法得到初始温度为100℃的水在20℃的室温中,12分钟以后温度下降到50℃.则在上述条件下,100℃的水应大约冷却( )分钟冲泡该绿茶(参考数据:ln2≈0.7,ln3≈1.1)A.3B.3.6C.4D.4.8答案:B分析:根据题意求出k的值,再将θ=80℃,θ1=100℃,θ0=20℃代入θ=θ0+(θ1−θ0)e−kt即可求得t的值.由题可知:50=20+(100−20)e−12k⇒(e−k)12=38⇒e−k=(38)112,冲泡绿茶时水温为80℃,故80=20+(100−20)⋅e−kt⇒(e−k)t=34⇒t⋅lne−k=ln34⇒t=ln 3 4ln(38)112=12(ln3−2ln2)ln3−3ln2≈12(1.1−2×0.7)1.1−3×0.7=3.6.故选:B.5、已知9m=10,a=10m−11,b=8m−9,则()A.a>0>b B.a>b>0C.b>a>0D.b>0>a 答案:A分析:法一:根据指对互化以及对数函数的单调性即可知m =log 910>1,再利用基本不等式,换底公式可得m >lg11,log 89>m ,然后由指数函数的单调性即可解出. [方法一]:(指对数函数性质) 由9m=10可得m =log 910=lg10lg9>1,而lg9lg11<(lg9+lg112)2=(lg992)2<1=(lg10)2,所以lg10lg9>lg11lg10,即m >lg11,所以a =10m −11>10lg11−11=0. 又lg8lg10<(lg8+lg102)2=(lg802)2<(lg9)2,所以lg9lg8>lg10lg9,即log 89>m ,所以b =8m −9<8log 89−9=0.综上,a >0>b . [方法二]:【最优解】(构造函数) 由9m =10,可得m =log 910∈(1,1.5).根据a,b 的形式构造函数f(x)=x m −x −1(x >1) ,则fʹ(x)=mx m−1−1, 令fʹ(x)=0,解得x 0=m11−m,由m =log 910∈(1,1.5) 知x 0∈(0,1) .f(x) 在 (1,+∞) 上单调递增,所以f(10)>f(8) ,即 a >b , 又因为f(9)=9log 910−10=0 ,所以a >0>b . 故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法; 法二:利用a,b 的形式构造函数f(x)=x m −x −1(x >1),根据函数的单调性得出大小关系,简单明了,是该题的最优解.6、已知2a =5b =10,则1a+1b =( )A .1B .2C .12D .15答案:A分析:运用对数的定义和换底公式、以及运算性质,计算即可得到所求值. 解:若2a =5b =10, 可得a =log 210,b =log 510, 则1a +1b =1log510+1log 210=lg5+lg2=lg10=1,故选:A.7、设4a=3b=36,则1a +2b=()A.3B.1C.−1D.−3答案:B分析:先求出a=log436,b=log336,再利用换底公式和对数的运算法则计算求解. 因为4a=3b=36,所以a=log436,b=log336,则1a =log364,2b=log369,所以则1a +2b=log364+log369=log3636=1.故选:B.8、若ln2=a,ln3=b,则log818=()A.a+3ba3B.a+2b3aC.a+2ba3D.a+3b3a答案:B分析:先换底,然后由对数运算性质可得.log818=ln18ln8=ln(32×2)ln23=2ln3+ln23ln2=2b+a3a.故选:B多选题9、函数f(x)=2x−2x−a的一个零点在区间(1,2)内,则实数a的可能取值是()A.0B.1C.2D.3答案:BC分析:根据初等函数的单调性判断函数f(x)=2x−2x−a的单调性,根据零点存在定理可得f(1)f(2)<0,从而可得结果.因为函数y=2x、y=−2x在定义域{x|x≠0}上单调递增,所以函数f (x )=2x −2x−a 在{x |x ≠0}上单调递增,由函数f (x )=2x −2x−a 的一个零点在区间(1,2)内,得f (1)×f (2)=(2−2−a)(4−1−a)=(−a )×(3−a )<0, 解得0<a <3, 故选:BC10、已知a =log 3e,b =log 23,c =ln3,则( ) A .a <b <c B .a <c <b C .D .a +c <b 答案:BC分析:由对数函数的单调性结合换底公式比较a,b,c 的大小,计算出a +c ,利用基本不等式得a +c >2,而b <2,从而可比较大小.由题意可知,对于选项AB ,因为b =log 23=ln3ln2>ln3lne=ln3=c ,所以b >c ,又因为a =log 3e <log 33=1,且c =ln3>lne =1,所以,则b >c >a ,所以选项A 错误,选项B 正确;对于选项CD ,a +c =log 3e +ln3=lne ln3+ln3=1ln3+ln3>2√1ln3⋅ln3=2,且b =log 23<b =log 24=2,所以,故选项C 正确,选项D 错误; 故选:BC.小提示:关键点点睛:本题考查对数函数的单调性,利用单调性比较对数的大小,对于不同底的对数,可利用换底公式化为同底,再由用函数的单调性及不等式的性质比较大小,也可结合中间值如0或1或2等比较后得出结论.11、设函数f (x )={|x 2+3x |,x ≤1log 2x,x >1,若函数f (x )+m =0有五个零点,则实数m 可取( )A .−3B .1C .−12D .−2 答案:CD分析:函数f (x )+m =0有五个零点等价于y =f (x )与y =−m 有五个不同的交点,作出f (x )图像,利用图像求解即可a cb +>c a >a c b +>函数f (x )+m =0有五个零点等价于y =f (x )与y =−m 有五个不同的交点,作出f (x )图像可知,当x =−32时,f (−32)=|(−32)2+3×(−32)|=94 若y =f (x )与y =−m 有五个不同的交点, 则−m ∈(0,94), ∴m ∈(−94,0),故选:CD .12、已知函数f(x)=2x −12x +1,则下列结论正确的是( )A .函数f(x)的定义域为RB .函数f(x)的值域为(−1,1)C .函数f(x)的图象关于y 轴对称D .函数f(x)在R 上为增函数 答案:ABD分析:根据指数函数的性质,结合偶函数定义、单调性的性质逐一判断即可. A :因为2x >0,所以函数f(x)的定义域为R ,因此本选项结论正确; B :f(x)=2x −12x +1=1−22x +1,由2x >0⇒2x +1>1⇒0<12x +1<1⇒−2<−22x +1<0⇒−1<−22x +1<1,所以函数f(x)的值域为(−1,1),因此本选项结论正确;C:因为f(−x)=2−x−12−x+1=1−2x1+2x=−f(x),所以函数f(x)是奇函数,其图象关于原点对称,不关于y轴对称,因此本选项说法不正确;D:因为函数y=2x+1是增函数,因为y=2x+1>1,所以函数y=22x+1是减函数,因此函数f(x)=1−22x+1是增函数,所以本选项结论正确,故选:ABD13、已知函数f(x)=a x(a>1),g(x)=f(x)−f(−x),若x1≠x2,则()A.f(x1)f(x2)=f(x1+x2)B.f(x1)+f(x2)=f(x1x2)C.x1g(x1)+x2g(x2)>x1g(x2)+x2g(x1)D.g(x1+x22)⩽g(x1)+g(x2)2答案:AC分析:对选项A、B,利用指数幂的运算性质即可判断选项A正确,选项B错误;对选项C、利用g(x)=f(x)−f(−x)=a x−a−x(a>1)在R上单调递增即可判断,选项C正确;对选项D、根据f(x)=a x(a>1),且x1≠x2,由凹凸性有f(x1+x22)<12[f(x1)+f(x2)],又f(−x)=(1 a )x(a>1),由凹凸性有f(−x1−x22)>12[f(−x1)+f(−x2)]即可判断选项D错误;解:对选项A:因为a x1⋅a x2=a x1+x2,所以f(x1)f(x2)=f(x1+x2),故选项A正确;对选项B:因为a x1+a x2≠a x1x2,所以f(x1)+f(x2)≠f(x1x2),故选项B错误;对选项C:由题意,因为a>1,所以g(x)=f(x)−f(−x)=a x−a−x在R上单调递增,不妨设x1>x2,则g(x1)>g(x2),所以(x1−x2)g(x1)>(x1−x2)g(x2),即x1g(x1)+x2g(x2)>x1g(x2)+ x2g(x1),故选项C正确;对选项D:因为f(x)=a x(a>1),且x1≠x2,所以由凹凸性有f(x1+x22)<12[f(x1)+f(x2)],又f(−x)=(1a )x(a>1),所以由凹凸性有f(−x1−x22)>12[f(−x1)+f(−x2)],所以有f(x1+x22)+12[f(−x1)+f(−x2)]<f(−x1−x22)+12[f(x1)+f(x2)],即f(x1+x22)−f(−x1−x22)<12[f(x1)+f(x2)]−12[f(−x1)+f(−x2)],即g (x 1+x 22)<g (x 1)+g (x 2)2,故选项D 错误;故选:AC. 填空题14、已知实数a >0且a ≠1,不论a 取何值,函数y =a x−4+2的图像恒过一个定点,这个定点的坐标为______. 答案:(4,3)分析:根据指数函数过定点问题求解. 令x −4=0,得 x =4,此时 y =3,所以函数y =a x−4+2的图像恒过的定点坐标为(4,3), 所以答案是:(4,3)15、若√4a 2−4a +1=√(1−2a )33,则实数a 的取值范围_________ . 答案:(−∞,12]分析:由二次根式的化简求解由题设得√4a 2−4a +1=√(2a −1)2=|2a −1|,√(1−2a )33=1−2a ,所以|2a −1|=1−2a 所以1−2a ≥0,a ≤12.所以答案是:(−∞,12]16、函数y =log a (kx −5)+b (a >0且a ≠1)恒过定点(2,2),则k +b =______. 答案:5分析:根据对数函数的图象与性质,列出方程组,即可求解. 由题意,函数y =log a (kx −5)+b 恒过定点(2,2), 可得{2k −5=1b =2,解得k =3,b =2,所以k +b =3+2=5.所以答案是:5. 解答题17、已知函数f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+mx ,函数f (x )在y 轴左侧的图象如图所示.(1)求函数f (x )的解析式;(2)若关于x 的方程f (x )−a =0有4个不相等的实数根,求实数a 的取值范围. 答案:(1)f (x )={x 2+2x,x ≤0x 2−2x,x >0(2)(−1,0)分析:(1)利用f (−2)=0可求x ≤0时f (x )的解析式,当x >0时,利用奇偶性f (x )=f (−x )可求得x >0时的f (x )的解析式,由此可得结果;(2)作出f (x )图象,将问题转化为f (x )与y =a 有4个交点,数形结合可得结果.(1)由图象知:f (−2)=0,即4−2m =0,解得:m =2,∴当x ≤0时,f (x )=x 2+2x ; 当x >0时,−x <0,∴f (−x )=(−x )2−2x =x 2−2x , ∵f (x )为R 上的偶函数,∴当x >0时,f (x )=f (−x )=x 2−2x ; 综上所述:f (x )={x 2+2x,x ≤0x 2−2x,x >0;(2)∵f (x )为偶函数,∴f (x )图象关于y 轴对称,可得f (x )图象如下图所示,f(x)−a=0有4个不相等的实数根,等价于f(x)与y=a有4个不同的交点,由图象可知:−1<a<0,即实数a的取值范围为(−1,0).18、吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每生产x万盒,需投入成本ℎ(x)万元,当产量小于或等于50万盒时ℎ(x)=180x+100;当产量大于50万盒时ℎ(x)=x2+60x+3500,若每盒玩具手办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完(利润=售价-成本,成本=固定成本+生产中投入成本)(1)求“冰墩墩”玩具手办销售利润y(万元)关于产量x(万盒)的函数关系式;(2)当产量为多少万盒时,该企业在生产中所获利润最大?答案:(1)y={20x−300,0≤x≤50−x2+140x−3700,x>50,x∈N(2)70万盒分析:(1)根据题意分0≤x≤50和x>50两种情况求解即可;(2)根据分段函数中一次与二次函数的最值求解即可.(1)当产量小于或等于50万盒时,y=200x−200−180x−100=20x−300,当产量大于50万盒时,y=200x−200−x2−60x−3500=−x2+140x−3700,故销售利润y(万元)关于产量x(万盒)的函数关系式为y={20x−300,0≤x≤50−x2+140x−3700,x>50,x∈N (2)当0≤x≤50时,y≤20×50−300=700;当x>50时,y=−x2+140x−3700,当x=140=70时,y=−x2+140x−3700取到最大值,为1200.2因为700<1200,所以当产量为70万盒时,该企业所获利润最大.。
高一函数题型及解题技巧高一函数是高中数学中的重要内容,包括函数的定义、性质、图像、变化规律等,在考试中也经常出现。
下面是一些高一函数题型及解题技巧的介绍。
1.函数的定义题型函数的定义题型考察的是对函数的基本概念和定义的理解。
通常会给出一个函数的表达式或定义,然后要求判断函数的性质或回答问题。
解题时要仔细分析函数的定义,注意函数值的范围、定义域和值域等因素。
2.函数的性质题型函数的性质题型考察的是对函数性质的理解和运用。
通常会给出一个函数的表达式或定义,并且要求判断函数的奇偶性、单调性、周期等性质。
解题时要根据函数的性质进行分析,可以使用导数、导数的符号变化、函数图像等方法。
3.函数的图像题型函数的图像题型考察的是对函数图像的理解和分析能力。
通常会给出一个函数的表达式或定义,然后要求画出函数的图像或分析图像的特点。
解题时可以先分析函数的性质,然后根据性质画图,注意函数的变化规律和特殊点的位置。
4.函数的变化规律题型函数的变化规律题型考察的是对函数变化规律的掌握和分析能力。
通常会给出一个函数的表达式或定义,然后要求分析函数的变化规律或进行函数的运算。
解题时要注意函数的变化趋势、特点和规律,可以使用导数、极值、最值等方法。
解题技巧:1.熟练掌握函数的基本概念和定义,理解函数的性质和特点。
2.注意观察题目中给出的已知条件和要求,对问题进行合理的分析和解答。
3.尽量画出函数的图像,根据图像进行分析和判断。
首先确定函数的性质和特点,然后根据特点进行计算或推导。
4.注意函数的定义域和值域,合理利用函数的性质进行推导和计算。
5.灵活运用导数和基本函数的性质,尤其是对于求导和导数的符号变化。
6.注意函数的极值和最值,找出极值点和最值点的位置和数值。
以上是一些高一函数题型及解题技巧的介绍,希望对你有帮助。
在学习函数的过程中,要多做练习题,熟练掌握函数的概念、性质和画图方法,提高解题能力。
高中数学函数题型及解题技巧
高中数学中的函数是非常难的,很多同学在函数部分都会丢分,那么高中数学函数题型及解题技巧是什么?
高中数学函数题型及解题技巧一、分段函数:是一个函数,只是不同区间段上对应法则不同而已。
二、分段函数的图像:
求函数解析式
常见的求函数解析式的方法有待定系数法,
换元法,配凑法、方程组法。
高中函数难不难函数之所以难学,是因为它变化多端,同一个公式原理,同一种方法,可能有很多种不同的变化或组合形态。
很多学生记得公式,记得一些固定的函数性质或图像,而不会综合运用。
就好比给普通人一个工具箱,他却不能像机械师一样熟练地组装机器设备。
为什么呢?道理是相同的,不理解,缺乏练习,练习的方法不正确,相关技能和方法没有掌握。
函数知识的组合会产生很多的变化,但这种变化通常都是有规律可遁的,我们只有深入不断的分析研究,才能够把握它的规律。
许多学生觉得函数难学,是因为适应不了函数的变化,不善于抓住变中的不变。
1。
高中数学题型归纳及方法一、函数题型。
1. 求函数定义域题型。
题目:求函数y = (1)/(√(x 1))+ln(x + 2)的定义域。
解析:对于(1)/(√(x 1)),要使根式有意义,则根号下的数大于0,即x 1>0,解得x>1。
对于ln(x + 2),对数函数中真数大于0,即x+2>0,解得x > 2。
综合起来,函数的定义域为x>1。
2. 函数单调性判断题型。
题目:判断函数y = x^2-2x + 3在(-∞,1)上的单调性。
解析:对于二次函数y = ax^2+bx + c(a≠0),其对称轴为x =-(b)/(2a)。
在函数y = x^2-2x + 3中,a = 1,b=-2,对称轴x = 1。
因为a = 1>0,二次函数开口向上,所以在对称轴左侧(-∞,1)上函数单调递减。
二、三角函数题型。
3. 三角函数化简求值题型。
题目:化简sin(α+β)cosβ-cos(α +β)sinβ并求值(已知α=(π)/(3))。
解析:根据两角差的正弦公式sin(A B)=sin Acos B-cos Asin B,这里A=α+β,B = β,所以sin(α+β)cosβ-cos(α+β)sinβ=sin(α+β-β)=sinα。
当α=(π)/(3)时,sinα=(√(3))/(2)。
4. 三角函数图象平移题型。
题目:将函数y=sin x的图象向左平移(π)/(3)个单位,再将所得图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),求得到的函数解析式。
解析:将y = sin x的图象向左平移(π)/(3)个单位,根据“左加右减”原则,得到y=sin(x+(π)/(3))的图象。
再将所得图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则x的系数变为原来的(1)/(2),得到y=sin((1)/(2)x+(π)/(3))。
三、数列题型。
5. 等差数列通项公式求题型。
题目:已知等差数列{a_n}中,a_1=2,公差d = 3,求其通项公式a_n。
高中数学函数的解题技巧在高中数学中,函数是一个重要的概念和内容。
解题时,我们经常会遇到各种各样的函数题目,需要掌握一些解题技巧。
本文将介绍几种常见的高中数学函数题型,并通过具体的例子进行分析和说明,帮助读者更好地理解和应用这些解题技巧。
一、函数的定义域和值域在解函数题时,首先要确定函数的定义域和值域。
定义域是指函数中自变量的取值范围,而值域是指函数中因变量的取值范围。
在确定定义域和值域时,需要考虑函数中的各种限制条件,如分式函数的分母不能为零等。
例题1:已知函数$f(x)=\frac{1}{x-2}$,求函数的定义域和值域。
解析:由于分式函数的分母不能为零,所以要使函数有意义,需要排除$x-2=0$的情况,即$x\neq2$。
因此,函数的定义域为$(-\infty,2)\cup(2,+\infty)$。
另外,由于分式的值可以是任意实数,所以函数的值域为$(-\infty,0)\cup(0,+\infty)$。
二、函数的图像与性质理解函数的图像和性质对于解题非常重要。
常见的函数图像包括线性函数、二次函数、指数函数、对数函数等。
了解函数的图像特点可以帮助我们更好地理解函数的性质和解题过程。
例题2:已知函数$y=x^2$,求函数的图像和性质。
解析:函数$y=x^2$表示平面上的一个抛物线,开口向上,顶点在原点。
这个函数的性质是:对于任意实数$x$,$x^2\geq0$,即函数的值都大于等于零。
另外,当$x>0$时,$x^2>x$;当$x<0$时,$x^2<x$。
这个性质在解不等式和优化问题时经常用到。
三、函数的复合和反函数函数的复合和反函数是常见的函数题型。
复合函数是指将一个函数的输出作为另一个函数的输入,反函数是指将一个函数的自变量和因变量互换得到的新函数。
例题3:已知函数$f(x)=2x+1$,求函数$f(f(x))$的表达式。
解析:将$f(x)=2x+1$代入$f(f(x))$的表达式中,得到$f(f(x))=2(2x+1)+1=4x+3$。
高中函数定义域题型及解题方法高中数学中,函数是一个重要的概念,而定义域则是函数的重要属性之一。
在高考数学中,定义域的求解也是一个重要的题型。
本文将介绍高中函数定义域的题型及解题方法。
一、定义域的概念定义域是指函数的取值范围,即函数的自变量可能取值的集合。
例如,函数 f(x) = x^2 + 1 的定义域是 R,因为 x 的取值可以任意取实数,且 x 的取值不影响函数的值。
二、常见定义域的题型1. 直接求解定义域有些函数的定义域是可以直接求解的,例如函数 f(x) = x^2 + 1 的定义域是 R,因为 x 的取值可以任意取实数,且 x 的取值不影响函数的值。
2. 求解函数的定义域在求解函数的定义域时,我们需要根据函数的符号和函数的表达式来确定自变量的取值范围。
例如,函数 g(x) = x^2 - 2x + 1 的定义域是 x 不等于 1。
3. 求解函数的值域有些函数的定义域和值域是一致的,例如函数 f(x) = x^2 + 1 的值域是 R。
而有些函数的定义域和值域是不同的,例如函数 g(x) = x^2 - 2x + 1 的定义域是 x 不等于 1,但函数的值域是 [-1,1]。
4. 求函数的定义域或值域在求解函数的定义域或值域时,我们需要根据函数的符号、表达式和定义域来确定自变量的取值范围。
例如,函数 h(x) = x^2 + 1 的定义域是 x 不等于 0,但函数的值域是 [1,+∞),因为 x 的取值可以任意增大。
三、解题方法1. 观察函数的符号和表达式,确定自变量的取值范围。
2. 根据函数的定义域和值域,结合函数的符号和表达式,求解定义域或值域。
3. 熟练掌握常见的函数定义域的求解方法,例如求解函数的定义域需要根据函数的符号和表达式来确定自变量的取值范围。
4. 学会分析函数的性质,例如奇偶性、单调性等,从而帮助求解定义域。
高中数学中,函数是一个重要的概念,而定义域则是函数的重要属性之一。
1、一元二次方程
解题技巧:
(1)将一元二次方程ax2+bx+c=0(a≠0)变成一元二次不等式ax2+bx+c≥0或ax2+bx+c≤0,计算其解的范围。
(2)转换成一元二次不等式后,用判别式Δ=b2-4ac 来确定方程的具体解法:
(a)Δ>0,则有两根;
(b)Δ=0,则有一根;
(c)Δ<0,则无解。
(3)根据Δ的值,计算一元二次方程的根:
(a)Δ>0,则根据公式x1=(-b+√Δ)/2a和x2=(-b-√Δ)/2a计算;
(b)Δ=0,则根据公式x=(-b)/2a计算;
(c)Δ<0,则无解。
2、函数图像
解题技巧:
(1)分析函数图像的奇偶性:函数y=f(x)的函数图像是一条不断变化的曲线,如果函数图像关于y轴对称,则称该函数为偶函数;如果函数图像关于原点对称,则称该函数为奇函数。
(2)分析函数图像的单调性:函数f(x)的函数图像表示函数y的取值随x的变化而变化的规律,如果函数图像在某个区间内是单调递增或者单调递减的,则称该函数在该区间内是单调的。
(3)分析函数图像的极值:对于一个函数f(x)的函数图像,如果函数图像在某个区间有极大值和极小值,则称该函数在该区间有极值。