高中数学-分段函数及题型
- 格式:doc
- 大小:246.27 KB
- 文档页数:3
x 2【经典例题赏析】例1 .求函数f (X ) 【解析】当x 0时, 分段函数及题型 4x 3 (x 0)x 3 (0 x 1)的最大值.x 5 (x 1)f max ( x) f(0) 3,当 0 x 1 时,f max (x) f (1) 4 x 5 1 5 4,综上有 f max (x) 4.例2 .在同一平面直角坐标系中 ,函数y f (x)和y g(x)的图象关于直线y x 对称,现将y g(x)的图象沿x 轴向左平移 2个单位, 再沿y 轴向上平移1个单位,所得的图象是由两条线段组成的折线 (如图所示),则函数 f (x)的表达式为() 答案A. f(x)2x 2 今2 (1 (0 x 0)x 2)B. f(x)2x 2 今2 (1 (0 x 0)x 2)C. f(x)2x 2 今1 (1 (2 2)4)D. f(x) 2x 6今3 (1 (2 2)4)例3 .判断函数f(x) x 2(x 1) (x x 2(x 1)(x 0)的奇偶性. 0)【解析】当x 0时,x 0, f( x) x)2( x 1) x 2(x 1) f (x),当 x f( 0) f (0) 0, 当x 0, 0,f( x) (x)2( x 1) x 2(x 1) f (x)因此, 对于任意x R 都有f( x) f(x),所以f(x)为偶函数.1 o 2f '(x) 3x 2 1 1恒成立,所以f (x)是单调递增函数,当x 0 f (x)也是单调递增函数,所以f (x)在R 上是单调递增函数 或画图易知f(x)在R 上是单调递增函数 例5 .写出函数f (x) |1 2x| |2 x|的单调减区间.3x 1 (x 4)【解析】f(x) 3 x (-2x2),画图易知单调减区间为(,弓].3x 1 (x 2)x 2 1 (x 0)例6 .设函数f(x) 1,若f(x 。
)1 ,则x 0得取值范围是( )答案D.x 2 (x 0)f (x) 1 4 \ x 1 1 \ x 1 3 x 10 , 0 x 10, 故选A 项.例4 .判断函数f(x) X 3 x(x X 2 (x 0)的单调性. 0) 【解析】 A.( 1,1) B.( 1,)C.( ,2) (0, )D. ( , 1) (1,) 例7 .设函数 f(x)(x 1)2 (x 1) 则使得f (x) 1的自变量x 4 、、x 1 (x 1) 的取值范围为 () A .(, 2] [0,10] B. (,2] [0,1] C.(, 2] [1,10] D. [2,0] [1,10] 【解析】 当 x 1 时,f (X )1 (x 1)21 x 2或x 0 , 所以x 2或0 x 1, 显然f(x)连续.当x 0时,时,f '(x) 2x 0恒成立, 所以1 x 10 , 综上所述,1 .函数y3 函数y lg x ()A.是偶函数,在区间(B.是偶函数,在区间(C.是奇函数,在区间(0,D是奇函数,在区间(0, 2、画出函数y |x 1|针对性课堂训练,0)上单调递增,0)上单调递减)上单调递增)上单调递减|2x 3|在区间[4,3)的图象3x 2(4 x 3)3x 2(1 x 3)4 •某商品在近30天内每件的销售价格p (元)与时间t (天)的函数关系是t 20,t 100, 0 t25 t25,t N,该商品的日销售量30,t N. Q (件)与时间t (天)的函数关系是t 40 (0 t 30,t N),求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?。
【高中数学专项突破】专题13 分段函数问题题组4 分段函数1.函数f(x)=的值域是()A.RB.(0,2)∪(2,+∞)C.(0,+∞)D.[0,2]∪[3,+∞)2.设函数g(x)=x2-2(x∈R),f(x)=则f(x)的值域是()A.[0,+∞)B.[-,+∞)C.[-,0]∪(1,+∞)D.[-,0]∪(2,+∞)3.已知f(x)=则f(f(f(-2)))等于()A.πB.0C.2D.π+14.设f(x)=则f(f(0))等于()A.1B.0C.2D.-15.设函数f(x)=若f=4,则b等于()A.1B.C.D.6.已知A、B两地相距150千米,某人开汽车以60千米/小时的速度从A地前往B地,在B地停留1小时后再以50千米/小时的速度返回A地,把汽车离开A地的距离x表示为时间t(小时)的函数表达式是()A.x=60tB.x=60t+50C.x=D.x=7.已知函数f(x)=则f(x)-f(-x)>-1的解集为()A.(-∞,-1)∪(1,+∞)B.[-1,-)∪(0,1]C.(-∞,0)∪(1,+∞)D.[-1,-]∪(0,1)8.已知符号函数sgn x=则不等式(x+1)sgn x>2的解集是()A.(-3,1)B.(-∞,-3)∪(1,+∞)C.(1,+∞)D.(-∞,-3)9.设函数f(x)=若f(-4)=f(0),f(-2)=-2,则关于x的方程f(x)=x的解的个数为()A.1B.2C.3D.410.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水不超过10立方米的,按每立方米m 元收费;用水超过10立方米的,超过部分按每立方米2m元收费.某职工某月缴水费16m元,则该职工这个月实际用水为()A.13立方米B.14立方米C.18立方米D.26立方米11.已知g(x)=ax+a,f(x)=对任意x1∈[-2,2],存在x2∈[-2,2],使g(x1)=f(x2)成立,则a的取值范围是()A.[-1,+∞)B.[-,1]C.(0,1]D.(-∞,1]12.定义在R上的函数f(x)满足f(1+x)=f(1-x),且x≥1时,f(x)=+1,则f(x)的解析式为________.13.已知函数f(x)=(1)求f(f(f(5)))的值;(2)画出函数f(x)的图象.14.已知函数f(x)=(1)求f,f,f(4.5),f;(2)若f(a)=6,求a的值.15.已知实数a≠0,函数f(x)=(1)若a=-3,求f(10),f(f(10))的值;(2)若f(1-a)=f(1+a),求a的值.16.某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图所示.则:(1)月通话为50分钟时,应交话费多少元;(2)求y与x之间的函数关系式.17.已知f(x)=(1)画出f(x)的图象;(2)若f(x)=,求x的值;(3)若f(x)≥,求x的取值范围.18.某种商品在近30天内每件的销售价格P(元)与时间t(天)的函数关系式近似满足P=商品的日销售量Q(件)与时间t(天)的函数关系式近似满足Q=-t+40(1≤t≤30,t∈N).求这种商品日销售金额的最大值,并指出日销售金额最大的一天是30天中第几天.19.某工厂生产一批产品,由历年市场行情得知,从2月1日起的300天内,产品的市场售价与上市时间的关系用如图(1)所示的一条折线表示;生产成本与上市时间的关系用如图(2)所示的抛物线表示.(1)写出图(1)表示的市场售价与时间的函数关系式P=f(t),写出图(2)表示的生产成本与时间的函数关系式Q=g(t);(2)认定市场售价减去生产成本为纯利益,则何时上市产品的纯收益最大?(注:市场售价和生产成本的单位:元/件,时间单位:天)20.已知函数f(x)=(1)试比较f(f(-3))与f(f(3))的大小;(2)画出函数的图象;(3)若f(x)=1,求x的值.专题13 分段函数问题题组4 分段函数1.函数f(x)=的值域是()A.RB.(0,2)∪(2,+∞)C.(0,+∞)D.[0,2]∪[3,+∞)【答案】D【解析】画出函数f(x)的图象如图所示,由图可知f(x)的值域为[0,2]∪[3,+∞).2.设函数g(x)=x2-2(x∈R),f(x)=则f(x)的值域是()A.[0,+∞)B.[-,+∞)C.[-,0]∪(1,+∞)D.[-,0]∪(2,+∞)【答案】D【解析】由题意,可知f(x)=因此问题就等价于求二次函数在给定区间上的取值范围,∴若x∈(-∞,-1)∪(2,+∞),则f(x)∈(2,+∞),若x∈[-1,2],则f(x)∈[-,0],∴f(x)的值域为[-,0]∪(2,+∞).3.已知f(x)=则f(f(f(-2)))等于()A.πB.0C.2D.π+1【答案】D【解析】f(-2)=0,f(0)=π,f(π)=π+1.4.设f(x)=则f(f(0))等于()A.1B.0C.2D.-1【答案】C【解析】5.设函数f(x)=若f=4,则b等于()A.1B.C.D.【答案】D【解析】∵<1,∴f=3×-b=-b.若-b<1,即b>,则f=3-b=-4b<-≠4.若-b≥1,即b≤,则f=2=5-2b=4,b=.故选D.6.已知A、B两地相距150千米,某人开汽车以60千米/小时的速度从A地前往B地,在B地停留1小时后再以50千米/小时的速度返回A地,把汽车离开A地的距离x表示为时间t(小时)的函数表达式是()A.x=60tB.x=60t+50C.x=D.x=【答案】D【解析】由于在B地停留1小时期间,距离x不变,始终为150千米,故选D.7.已知函数f(x)=则f(x)-f(-x)>-1的解集为()A.(-∞,-1)∪(1,+∞)B.[-1,-)∪(0,1]C.(-∞,0)∪(1,+∞)D.[-1,-]∪(0,1)【答案】B【解析】①当-1≤x<0时,0<-x≤1,此时f(x)=-x-1,f(-x)=-(-x)+1=x+1,∴f(x)-f(-x)>-1化为-2x-2>-1,解得x<-,则-1≤x<-.②当0<x≤1时,-1≤-x<0,此时f(x)=-x+1,f(-x)=-(-x)-1=x-1,∴f(x)-f(-x)>-1化为-2x+2>-1,解得x<,则0<x≤1.故所求不等式的解集为[-1,-)∪(0,1].8.已知符号函数sgn x=则不等式(x+1)sgn x>2的解集是()A.(-3,1)B.(-∞,-3)∪(1,+∞)C.(1,+∞)D.(-∞,-3)【答案】B【解析】原不等式可化为或或(不成立,舍去),解得x>1或x<-3. 9.设函数f(x)=若f(-4)=f(0),f(-2)=-2,则关于x的方程f(x)=x的解的个数为()A.1B.2C.3D.4【答案】C【解析】由f(-4)=f(0),f(-2)=-2可得⇒当x≤0时,f(x)=x⇔x2+3x+2=0⇔x1=-1,x2=-2,有两个解,当x>0时,f(x)=x显然有一个解x=2,故选C.10.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水不超过10立方米的,按每立方米m 元收费;用水超过10立方米的,超过部分按每立方米2m元收费.某职工某月缴水费16m元,则该职工这个月实际用水为()A.13立方米B.14立方米C.18立方米D.26立方米【答案】A【解析】该单位职工每月应缴水费y与实际用水量x满足的关系式为y=由y=16m,可知x>10.令2mx-10m=16m,解得x=13(立方米).11.已知g(x)=ax+a,f(x)=对任意x1∈[-2,2],存在x2∈[-2,2],使g(x1)=f(x2)成立,则a的取值范围是()A.[-1,+∞)B.[-,1]C.(0,1]D.(-∞,1]【答案】B【解析】由题意知函数g(x)在区间[-2,2]上的值域是函数f(x)在区间[-2,2]上的值域的子集;因为当x∈[0,2]时,-1≤x2-1≤3,当x∈[-2,0)时,-4≤-x2<0,所以函数f(x)的值域是[-1,3]∪[-4,0)=[-4,3],所以解得-≤a≤1.12.定义在R上的函数f(x)满足f(1+x)=f(1-x),且x≥1时,f(x)=+1,则f(x)的解析式为________.【答案】f(x)=【解析】设x<1,则2-x>1,且f(x)=f=f(1-(x-1))=f(2-x)=+1.∴f(x)=13.已知函数f(x)=(1)求f(f(f(5)))的值;(2)画出函数f(x)的图象.【答案】(1)因为5>4,所以f(5)=-5+2=-3.因为-3<0,所以f(f(5))=f(-3)=-3+4=1.因为0<1<4,所以f(f(f(5)))=f(1)=12-2×1=-1.(2)f(x)的图象如下:14.已知函数f(x)=(1)求f,f,f(4.5),f;(2)若f(a)=6,求a的值.【答案】(1)∵-∈(-∞,-1),∴f=-2×=3.∵∈[-1,1],∴f=2.又2∈(1,+∞),∴f=f(2)=2×2=4.∵4.5∈(1,+∞),∴f(4.5)=2×4.5=9.(2)经观察可知a∉[-1,1],否则f(a)=2.若a∈(-∞,-1),令-2a=6,得a=-3,符合题意;若a∈(1,+∞),令2a=6,得a=3,符合题意.∴a的值为-3或3.15.已知实数a≠0,函数f(x)=(1)若a=-3,求f(10),f(f(10))的值;(2)若f(1-a)=f(1+a),求a的值.【答案】(1)若a=-3,则f(x)=所以f(10)=-4,f(f(10))=f(-4)=-11.(2)当a>0时,1-a<1,1+a>1,所以2(1-a)+a=-(1+a)-2a,解得a=-,不符合,舍去;当a<0时,1-a>1,1+a<1,所以-(1-a)-2a=2(1+a)+a,解得a=-,符合.综上可知,a=-.16.某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图所示.则:(1)月通话为50分钟时,应交话费多少元;(2)求y与x之间的函数关系式.【答案】(1)由题意可知当0<x≤100时,设函数的解析式y=kx,又因过点(100,40),得解析式为y =x,当月通话为50分钟时,0<50<100,所以应交话费y=×50=20元.(2)当x>100时,设y与x之间的函数关系式为y=kx+b,由图知x=100时,y=40;x=200时,y=60. 则有解得所以解析式为y=x+20,故所求函数关系式为y=17.已知f(x)=(1)画出f(x)的图象;(2)若f(x)=,求x的值;(3)若f(x)≥,求x的取值范围.【答案】(1)利用描点法,作出f(x)的图象,如图所示.(2)f(x)=等价于①或②解①得x=±,②解集为∅.∴当f(x)=时,x=±.(3)由于f=,结合此函数图象可知,使f(x)≥的x的取值范围是∪.18.某种商品在近30天内每件的销售价格P(元)与时间t(天)的函数关系式近似满足P=商品的日销售量Q(件)与时间t(天)的函数关系式近似满足Q=-t+40(1≤t≤30,t∈N).求这种商品日销售金额的最大值,并指出日销售金额最大的一天是30天中第几天.【答案】设日销售金额为y元,则y=P·Q,所以y=即y=当1≤t≤24,t∈N时,t=10,y max=900;当25≤t≤30,t∈N时,t=25,y max=1 125.所以该商品日销售金额的最大值为1 125元,且在30天中的第25天销售金额最大.19.某工厂生产一批产品,由历年市场行情得知,从2月1日起的300天内,产品的市场售价与上市时间的关系用如图(1)所示的一条折线表示;生产成本与上市时间的关系用如图(2)所示的抛物线表示.(1)写出图(1)表示的市场售价与时间的函数关系式P=f(t),写出图(2)表示的生产成本与时间的函数关系式Q=g(t);(2)认定市场售价减去生产成本为纯利益,则何时上市产品的纯收益最大?(注:市场售价和生产成本的单位:元/件,时间单位:天)【答案】(1)由图(1)可得f(t)=g(t)=(t-150)2+100(0≤t≤300).(2)设从2月1日起的第t天的纯收益为h(t),则h(t)=f(t)-g(t)==故h(x)在区间[0,200]上的最大值为h(50)=100,在区间(200,300]上的最大值为h(300)=87.5,由100>87.5可知,h(t)在[0,300]上的最大值为h(50)=100,这时t=50,即从2月1日起的第50天上市,产品的纯收益最大.20.已知函数f(x)=(1)试比较f(f(-3))与f(f(3))的大小;(2)画出函数的图象;(3)若f(x)=1,求x的值.【答案】(1)∵-3<1,∴f(-3)=-2×(-3)+1=7,∵7>1,∴f(f(-3))=f(7)=72-2×7=35,∵3>1,∴f(3)=32-2×3=3,∴f(f(3))=3,∴f(f(-3))>f(f(3)).(2)函数图象如图所示:(3)由f(x)=1的函数图象综合判断可知,当x∈(-∞,1)时,得f(x)=-2x+1=1,解得x=0;当x∈[1,+∞)时,得f(x)=x2-2x=1,解得x=1+或x=1-(舍去).综上可知x的值为0或1+.。
x高中数学-分段函数及题型【解析】4x 3 (x0)例1 •求函数f(x)x 3 (0 x 1)的最大值.x 5 (x1)【解析】当x时,fmax(x)f(0)3,当 0 x 1 时,f max (X ) f (1) 4,当 x 1 时,x 51 5 4,综上有f max (x)4 .【经典例题赏析】例2.在同一平面直角坐标系中 x 0,f( x)(x)2( 1) x 2(x0, x 0, f( x)x)2( x1)任意 x R 都有 f( x)f (x),所以f(x)为偶函数.例4 •判断函数 f(x)x 3 x (x 0)2 x的单调性.(x 0)1) f (x),当 x2x (x 1) f (x)因此,对于函数y f(x)和y g(x)的图象关于直线 y x 对称,现将y g(x)的图象沿x 轴向左平移2个单位 ,再沿y 轴向上平移1个单位,所得的图象是由两条线段组成的折线 (如图所示),则函数f (x)的表达式为(B. C. 2x 2 (1x 0) x 22 (0x 2) y i f k2x 2 (1 x 0) 3'/x 2 2 (0x 2)2 “7 2x 2 (1 x 2)/x 21 (2 x 4) -2 -1o12x 6 (1 x 2)x2 3 (2 x 4)例3 •判断函数f(x)x 2(x 1)x 2(x(x 0) 的奇偶性.1)(x0)答案A.)f(x)f(x)f(x)► x D. f(x)【解析】显然f(x)连续.当x 0时,f (x) 3x 21 1恒成立,所以f(x)是单调递增函数,当x 0时,在R 上是单调递增函数 例5•写岀函数 f(x) |12x| |2 x|的单调减区间.3x 1 (x2)【解析】f (x)3 x (; x 2),画图易知单调减区间为(,;]3x 1(x 2)2 x 1 (x0)例6 •设函数f(X )1,若f (x 0) 1,则x 0得取值范围是()答案Dx 2(x 0)故选A 项.A.( 1,1)B.( 1,)C.( J2)(x1)2(x 1)例7 •设函数 f(x)4 - ,x 1(x 1)范围为()A •(,2] [0,10]B(0, ) D- ( , 1) (1,)则使得f (x) 1的自变量x 的取值 (,2] [0,1]f '(x)2x 0恒成立,f (x)也是单调递增函数所以f (x)在R 上是单调递增函数或画图易知f(x)C. ( , 2] [1,10]【解析】D. [ 2,0] [1,10]2当 x 1 时,f (X )1 (x 1)x 2或x 0 , 所以x2或 0 x 1 ,当 x 1 时,f(x) 14 、、x 1 1 1 3 x 10,所以1 x 10,综上所述x 2或 0 x 10,t 20,4.某商品在近30天内每件的销售价格(元)与时间(天)的函数关系是p t 100,该商品的日销售量 Q (件)与时间t (天)的函数关系是 Q t 40 (0 t 金额的最大值,并指岀日销售金额最大的一天是30天中的第几天?2、 针对性课堂训练x 的图象是1 .函数y 函数 A . B. C. y ig x ( 是偶函数,在区间是偶函数,在区间是奇函数,在区间是奇函数,在区间画岀函数y |x 3x 2( 4 3x 2(1 x(0, (0,,0)上单调递增 ,0)上单调递减)上单调递增 )上单调递减1| 1) 3)|2x3 1在区间[4,3)的图象0 t 25,t N, 25 t 30,t N.30, t N ),求这种商品的日销售。
高中数学微专题之——分段函数【考纲要求】【考题分析】【命题规律】分段函数是高考考查的重点和热点,主要考查分段函数求值、分段函数值域与最值、分段函数的图像与性质、分段函数方程、分段函数不等式等,考查分类整合、转化与化归、函数与方程、数形结合等数学思想与方法,考题多为填空题,难度为中档题或难题.【基础知识】若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数. 分段函数虽由几个部分组成,但它表示的是一个函数.分段函数是函数中比较复杂的一种函数,其要点在于自变量取不同范围的值时所使用的解析式不同,所以在解决分段函数的问题时要时刻盯着自变量的范围是否在发生变化.即“分段函数——分段看” .【题型分析】【题型一】求函数值【例1】(2017·盐城中学一模)f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x(x ≤0),log 3x (x >0),则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=________.【解析】∵f ⎝ ⎛⎭⎪⎫19=log 319=-2,∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=f (-2)=⎝ ⎛⎭⎪⎫13-2=9. 【方法技巧归纳】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.【例2】设函数()()cos ,011,0x x f x f x x π>⎧=⎨+-≤⎩,则103f ⎛⎫- ⎪⎝⎭的值为_________ 【解析】由()f x 解析式可知,只有0x >,才能得到具体的数值,0x <时只能依靠()()11f x f x =+-向0x > 正数进行靠拢。
由此可得:107412123433333f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=--=--=--=- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,而221cos 332f π⎛⎫==- ⎪⎝⎭ 10932f⎛⎫∴-=- ⎪⎝⎭【方法技巧归纳】含有抽象函数的分段函数,在处理里首先要明确目标,即让自变量向有具体解析式的部分靠拢,其次要理解抽象函数的含义和作用(或者对函数图象的影响)比如在本题中:()()0,11x f x f x <=+-可以立即为间隔为1的自变量,函数值差1,其作用在于自变量取负数时,可以不断1+直至取到正数。
课时分层作业(十六) 分段函数(建议用时:60分钟)[合格基础练]一、选择题1.已知函数f(x)=则f(3)的值是( )A.1 B.2 C.8 D.9A[f(3)=3-2=1.]2.函数f(x)=x+的图象是( )A B C DC[当x>0时,f(x)=x+=x+1,当x<0时,f(x)=x-1,且x≠0,根据一次函数图象可知C正确.故选C.]3.函数f(x)=的值域是( )A.R B.[0,2]∪{3}C.[0,+∞) D.[0,3]B[当0≤x≤1时,0≤2x≤2,即0≤f(x)≤2;当1<x<2时,f(x)=2;当x≥2时,f(x)=3.综上可知f(x)的值域为[0,2]∪{3}.]4.已知函数f(x)=若f(x)=3,则x的值是( )A. B.9C.-1或1 D.-或A[依题意,若x≤0,则x+2=3,解得x=1,不合题意,舍去.若0<x≤3,则x2=3,解得x=-(舍去)或x=.故选A.]5.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水量不超过10立方米的,按每立方米m元收费;用水量超过10立方米的,超过部分按每立方米2m元收费.某职工某月缴水费16m元,则该职工这个月实际用水量为( )A.13立方米B.14立方米C.18立方米D.26立方米A[该单位职工每月应缴水费y与实际用水量x满足的关系式为y=由y=16m,可知x>10.令2mx-10m=16m,解得x=13.]二、填空题6.设函数f(x)=则f(2)=________.[答案] 17.已知函数f(x)的图象如图所示,则f(x)的解析式是________.f(x)=[由题图可知,图象是由两条线段组成,当-1≤x<0时,设f(x)=ax+b,将(-1,0),(0,1)代入解析式,则∴即f(x)=x+1.当0≤x≤1时,设f(x)=kx,将(1,-1)代入,则k=-1,即f(x)=-x.综上,f(x)=]8.在平面直角坐标系xOy中,若直线y=2a与函数y=|x-a|-1的图象只有一个交点,则a的值为________.-[在同一平面直角坐标系内,作出函数y=2a与y=|x-a|-1的大致图象,如图所示.由题意,可知2a=-1,则a=-.]三、解答题9.已知函数f(x)=(1)求f(f(f(5)))的值;(2)画出函数f(x)的图象.[解](1)因为5>4,所以f(5)=-5+2=-3.因为-3<0,所以f(f(5))=f(-3)=-3+4=1.因为0<1≤4.所以f(f(f(5)))=f(1)=12-2×1=-1.(2)f(x)的图象如下:10.如图,动点P 从边长为4的正方形ABCD 的顶点B 开始,顺次经C ,D ,A 绕周界运动,用x 表示点P 的行程,y 表示△APB 的面积,求函数y =f (x )的解析式.[解] 当点P 在BC 上运动,即0≤x ≤4时,y =12×4×x =2x ;当点P 在CD 上运动,即4<x ≤8时,y =12×4×4=8;当点P 在DA 上运动,即8<x ≤12时,y =12×4×(12-x )=24-2x .综上可知,f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤4,8,4<x ≤8,24-2x ,8<x ≤12.[等级过关练]1.设f (x )=则f (5)的值是( ) A .24 B .21 C .18D .16A [f (5)=f (f (10)),f (10)=f (f (15))=f (18)=21,f (5)=f (21)=24.] 2.设函数f (x )=,若f (a )=4,则实数a =( ) A .-4或-2B .-4或2C .-2或4D .-2或2B [由或得a =-4或a =2.]3.已知实数a ≠0,函数f (x )=若f (1-a )=f (1+a ),则a 的值为________.- [当a >0时,1-a <1,1+a >1,∴2(1-a )+a =-1-a -2a ,解得a =-(舍去). 当a <0时,1-a >1,1+a <1,∴-1+a -2a =2+2a +a ,解得a =-.] 4.若定义运算a ⊙b =则函数f (x )=x ⊙(2-x )的值域为________. (-∞,1] [由题意得f (x )=画出函数f(x)的图象得值域为(-∞,1].]5.《中华人民某某国个人所得税法》规定,公民全月工资、薪金所得不超过5 000元的部分不必纳税,超过5 000元的部分为全月应纳税所得额,此项税款按下表分段累计计算:全月应纳税所得额税率不超过3 000元的部分3%超过3 000元至12 000元的部分10%超过12 000元至25 000元的部分20%x y(1)请写出y关于x的函数关系式;(2)有一职工八月份交纳了54元的税款,请问该职工八月份的工资是多少?[解](1)由题意,得y=错误!(2)∵该职工八月份交纳了54元的税款,∴5 000<x≤8 000,(x-5 000)×3%=54,解得x=6 800.故这名职工八月份的工资是6 800元.。
高中数学-分段函数及题型
【经典例题赏析】
例1.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪
=+<≤⎨⎪-+>⎩
的最大值.
【解析】当0x ≤时, max ()(0)3f x f ==, 当01x <
≤时, max ()(1)4f x f ==, 当1x >时,
5154x -+<-+=, 综上有max ()4f x =.
例2.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图
象沿x 轴向左平移2个单位, 再沿
y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线
(如图所示), 则函数()f x 的表达式为( ) 答案A.
222(10)
.()2(02)x
x x A f x x +-≤≤⎧=⎨+<≤⎩ 222(10)
.()2(02)x
x x B f x x --≤≤⎧=⎨-<≤⎩ 222(12)
.()1(24)x
x x C f x x -≤≤⎧=⎨+<≤⎩ 2
26(12)
.()3(24)x
x x D f x x -≤≤⎧=⎨-<≤⎩ 例3.判断函数2
2(1)(0)
()(1)(0)
x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.
【解析】 当0x >时, 0x -<, 22()()(1)(1)()f x x x x x f x -=---+=-=, 当0x =时, (0)(0)0f f -==,
当0x <,
0x ->, 22()()(1)(1)()f x x x x x f x -=---=-+=因此, 对于
任意x R ∈都有()()f x f x -=, 所以()f x 为偶函数.
例4.判断函数3
2
(0)
()(0)x x x f x x
x ⎧+≥⎪=⎨-<⎪⎩的单调性.
y
x
x
【解析】
显然()f x 连续. 当0x ≥时, '
2
()311f x x =+≥恒成立, 所以()f x 是单调递增函数, 当0x <时,
'()20f x x =->恒成立, ()f x 也是单调递增函数, 所以()f x 在R 上是单调递增函数; 或画图易知()
f x 在R 上是单调递增函数.
例5.写出函数()|12||2|f x x x =++-的单调减区间.
【解析】121231()()3(2)31(2)x x f x x x x x -+≤-⎧⎪
=+-<<⎨⎪-≥⎩
, 画图易知单调减区间为
12(,]-∞-. 例6.设函数1221(0)()(0)x x f x x x -⎧-≤⎪
=⎨⎪>⎩, 若0()1f x >, 则0x 得取值范围是( )答案D.
.(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞
例7.
设函数2(1)(1)()4(1)
x x f x x ⎧+<⎪=⎨
-≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )
A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃ 【解析】 当
1x <时, 2()1(1)120f x x x x ≥⇔+≥⇔≤-≥或, 所以21x x ≤-≤<或0, 当1x ≥时,
()141310f x x ≥⇔-≥⇔
≤⇔≤, 所以110x ≤≤, 综上所述, 2x ≤-或010x ≤≤,
故选A 项.
x
y
针对性课堂训练
1.函数x x
x y +=
的图象是
( )
3 函数
lg y x =( )
A . 是偶函数,在区间(,0)-∞ 上单调递增
B . 是偶函数,在区间(,0)-∞上单调递减
C . 是奇函数,在区间(0,)+∞ 上单调递增
D 是奇函数,在区间(0,)+∞上单调递减 2、画出函数
|32||1|++-=x x y 在区间)3,4[-的图象
⎪⎪⎪
⎩
⎪
⎪
⎪⎨⎧
<≤+<<-+-≤≤---=)31(23)
123(4)234(23x x x x x x y
4.某商品在近30天内每件的销售价格p (元)与时间t (天)的函数关系是20,
025,,100,
2530,.
t t t N p t t t N +<<∈⎧=⎨
-+≤≤∈⎩该商品的日销售量Q (件)与时间t (天)的函数关系是40+-=t Q ),300(N t t ∈≤<,求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?。