2023全国真题分类卷 第一部分 基础知识分点练 第九讲二次函数的图象与性质
- 格式:doc
- 大小:459.50 KB
- 文档页数:10
2022-2023学年九年级上数学:二次函数的图像和性质一.选择题(共5小题)
1.将二次函数y=x2的图象向下平移1个单位长度后,所得二次函数的表达式是()A.y=x2+1B.y=x2﹣1C.y=(x+1)2D.y=(x﹣1)2 2.已知二次函数y=ax2+bx+c,当﹣1≤x≤1时,总有﹣1≤y≤1,有如下几个结论:
①当b=c=0时,|a|≤1;
②当a=1时,c的最大值为0;
③当x=2时,y可以取到的最大值为7.
上述结论中,所有正确结论的序号是()
A.①②B.①③C.②③D.①②③
3.二次函数y=3(x+1)2﹣2的图象的顶点坐标是()
A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(1,2)
4.下列函数中,二次函数是()
A.y=﹣3x+5B.y=x(4x﹣3)
C.y=2(x+4)2﹣2x2D.y =
5.某同学将如图所示的三条水平直线m1,m2,m3的其中一条记为x轴(向右为正方向),三条竖直直线m4,m5,m6的其中一条记为y轴(向上为正方向),并在此坐标平面内画出了二次函数y=ax2﹣2ax+1(a<0)的图象,那么她所选择的x轴和y轴分别为直线()
A.m1,m4B.m2,m5C.m3,m6D.m2,m4
二.填空题(共5小题)
6.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:
第1页(共18页)。
二次函数图象性质与应用(30道)一、单选题1.(2023·江苏徐州·统考中考真题)在平面直角坐标系中,将二次函数2(1)3y x =++的图象向右平移2个单位长度,再向下平移1个单位长度,所得拋物线对应的函数表达式为( ) A .2(3)2y x =++ B .2(1)2y x =−+ C .2(1)4y x =−+ D .2(3)4y x =++【答案】B【分析】根据二次函数图象的平移“左加右减,上加下减”可进行求解.【详解】解:由二次函数2(1)3y x =++的图象向右平移2个单位长度,再向下平移1个单位长度,所得拋物线对应的函数表达式为2(1)2y x =−+;故选B .【点睛】本题主要考查二次函数图象的平移,熟练掌握二次函数图象的平移是解题的关键. 2.(2023·辽宁沈阳·统考中考真题)二次函数2(1)2y x =−++图象的顶点所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B【详解】根据抛物线2(1)2y x =−++,可以写出该抛物线的顶点坐标,从而可以得到顶点在第几象限. 解:2(1)2y x =−++,∴顶点坐标为()1,2-, ∴顶点在第二象限.故选:B .【点睛】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.3.(2023·甘肃兰州·统考中考真题)已知二次函数()2323y x =−−−,下列说法正确的是( ) A .对称轴为2x =− B .顶点坐标为()2,3 C .函数的最大值是-3 D .函数的最小值是-3【答案】C【分析】根据二次函数的图象及性质进行判断即可. 【详解】二次函数()2323y x =−−−的对称轴为2x =,顶点坐标为()2,3−∵30−<∴二次函数图象开口向下,函数有最大值,为=3y − ∴A 、B 、D 选项错误,C 选项正确 故选:C【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数图象和性质是解题的关键.4.(2023·贵州·统考中考真题)已知,二次数2y ax bx c =++的图象如图所示,则点(),P a b 所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【分析】首先根据二次函数的图象及性质判断a 和b 的符号,从而得出点(),P a b 所在象限. 【详解】解:由图可知二次函数的图象开口向上,对称轴在y 轴右侧, ∴0a >,02ba −>,∴0b <,∴(),P a b 在第四象限,故选D .【点睛】本题考查二次函数的图象与系数的关系,以及判断点所在象限,解题的关键是根据二次函数的图象判断出a 和b 的符号.5.(2023·辽宁营口·统考中考真题)如图.抛物线()20y ax bx c a =++≠与x 轴交于点()30A −,和点()10B ,,与y 轴交于点C .下列说法:①<0abc ;②抛物线的对称轴为直线=1x −;③当30x −<<时,20ax bx c ++>;④当1x >时,y 随x 的增大而增大;⑤2am bm a b +≤−(m 为任意实数)其中正确的个数是( )A .1个B .2个C .3个D .4个【答案】C【分析】根据抛物线开口向下,与y 轴交于正半轴,可得00a c <>,,根据()30A −,和点()10B ,可得抛物线的对称轴为直线=1x −,即可判断②;推出20b a =<,即可判断①;根据函数图象即可判断③④;根据当=1x −时,抛物线有最大值a b c −+,即可得到2am bm a b +≤−,即可判断⑤.【详解】解:∵抛物线开口向下,与y 轴交于正半轴, ∴00a c <>,, ∵抛物线与x 轴交于点()30A −,和点()10B ,,∴抛物线对称轴为直线3112x −+==−,故②正确;∴12b a −=−, ∴20b a =<,∴0abc >,故①错误;由函数图象可知,当30x −<<时,抛物线的函数图象在x 轴上方,∴当30x −<<时,20ax bx c ++>,故③正确;∵抛物线对称轴为直线=1x −且开口向下,∴当1x >−时,y 随x 的增大而减小,即当1x >时,y 随x 的增大而减小,故④错误; ∵抛物线对称轴为直线=1x −且开口向下, ∴当=1x −时,抛物线有最大值y a b c =−+,∴2am bm c a b c ++≤−+,∴2am bm a b +≤−,故⑤正确;综上所述,正确的有②③⑤, 故选C .【点睛】本题主要考查了抛物线的图象与系数的关系,抛物线的性质等等,熟练掌握抛物线的相关知识是解题的关键.6.(2023·陕西·统考中考真题)在平面直角坐标系中,二次函数22y x mx m m =++−(m 为常数)的图像经过点(06),,其对称轴在y 轴左侧,则该二次函数有( )【答案】D【分析】将(06),代入二次函数解析式,进而得出m 的值,再利用对称轴在y 轴左侧,得出3m =,再利用二次函数的顶点式即可求出二次函数最值.【详解】解:将(06),代入二次函数解析式22y x mx m m =++−得:26m m =−,解得:13m =,22m =−, ∵二次函数22y x mx m m =++−,对称轴在y 轴左侧,即022b m x a =−=−<,∴0m >, ∴3m =,∴223153624y x x x ⎛⎫=++=++⎪⎝⎭, ∴当23x =−时,二次函数有最小值,最小值为154,故选:D .【点睛】此题主要考查了二次函数的性质以及二次函数的最值,正确得出m 的值是解题关键.7.(2023·湖北鄂州·统考中考真题)如图,已知抛物线()20y ax bx c a =++≠的对称轴是直线1x =,且过点()1,0−,顶点在第一象限,其部分图象如图所示,给出以下结论:①0ab <;②420a b c ++>;③30a c +>;④若()11,A x y ,()22,B x y (其中12xx <)是抛物线上的两点,且122x x +>,则12y y >,其中正确的选项是( )A .①②③B .①③④C .②③④D .①②④【答案】D【分析】根据二次函数的性质可得a<0,2b a =−,0b >,可判断结论①;由2x =处的函数值可判断结论②;由=1x −处函数值可判断结论③;根据122x x +>得到点()11,A x y 到对称轴的距离小于点()22,B x y 到对称轴的距离可判断结论④.【详解】解:二次函数开口向下,则a<0,二次函数对称轴为1x =,则12b a −=,2b a =−,0b >,∴0ab <,故①正确; ∵过点()1,0−,∴由对称性可得二次函数与x 轴的另一交点为()3,0,由函数图象可得2x =时0y >, ∴420a b c ++>,故②正确;1x =−时0y =,0a b c ∴−+=,2b a =−代入得:30a c +=,故③错误;∵对称轴是直线1x =,∴若1212x x +=,即122x x +=时,12y y =,∴当122x x +>时,点()11,A x y 到对称轴的距离小于点()22,B x y 到对称轴的距离∵二次函数开口向下 ∴12y y >,故④正确.综上所述,正确的选项是①②④. 故选: D .【点睛】本题考查了二次函数的综合,掌握二次函数的图象与各项系数符号的关系是解题关键.8.(2023·山东日照·统考中考真题)在平面直角坐标系xOy 中,抛物线2(0)y ax bx a =+≠,满足300a b a b +>⎧⎨+<⎩,已知点(3,)m −,(2,)n ,(4,)t 在该抛物线上,则m ,n ,t 的大小关系为( ) A .t n m << B .m t n <<C .n t m <<D .n m t <<【答案】C【分析】利用解不等式组可得3a b a −<<−且0a >,即可判断二次函数的对称轴位置,再利用函数的增减性判断即可解题.【详解】解不等式组可得:3a b a −<<−,且0a >所以对称轴2b x a =−的取值范围在1322x <<,由对称轴位置可知到对称轴的距离最近的是(2,)n ,其次是(4,)t ,最远的是(3,)m −, 即根据增减性可得n t m <<, 故选C .【点睛】本题考查二次函数的图像和性质,求不等组的解集,掌握二次函数的图像和性质是解题的关键.A .4B .3C .2D .1【答案】D【分析】根据二次函数图象可知:a<0,02ba −>,0c >,得出0ab c <,故①不正确;将点()2,0−,()3,0代入,得出:0a b +=,再求出2c b =−,故②不正确;根据函数图象可得213y y y <<,故③正确;根据方程20cx bx a ++=,()()22244270b ac b b b b ∆=−=−⨯−⨯−=−<,可知方程无解,故④不正确.【详解】解:根据二次函数图象可知:a<0,02b a −>,0c >,∴0b >,∴0abc <,故①不正确;将点()2,0−,()3,0代入得出:40930a b c a b c −+=⎧⎨++=⎩①②,②-①得出:0a b +=,∴a b =−,再代入①得出:2c b =−,故②不正确; ∵1302−<−<,∴20y <,30y >, ∵502>,∴10y >,根据图象可知:213y y y <<,故③正确;∵方程20cx bx a ++=,∴()()22244270b ac b b b b ∆=−=−⨯−⨯−=−<,∴方程20cx bx a ++=无解,故④不正确;正确的个数是1个, 故选:D .【点睛】本题考查二次函数,掌握二次函数的性质是解题的关键.A .1B .2C .3D .4【答案】B【分析】由图象得 a<0,0c >,由对称轴12b x a =−=得20b a =−>,20a b +=,0bc >;抛物线与x 轴的一个交点位于()2,0,()3,0两点之间,由对称性知另一个交点在(1,0)−,(0,0)之间,得0y a b c =−+<,于是13a c <−,进一步推知30ca -<<,由根与系数关系知1230x x -<<;【详解】解:开口向下,得 a<0,与y 轴交于正半轴,0c >,对称轴12bx a =−=,20b a =−>,20a b +=,故①20a b +>错误;0bc > 故②0bc <错误;抛物线与x 轴的一个交点位于()2,0,()3,0两点之间,对称轴为1x =,故知另一个交点在(1,0)−,(0,0)之间,故=1x −时,0y a b c =−+<∴(2)0a a c −−+<,得13a c <−,故③13a c<−正确; 由13a c <−,a<0,0c >知30ca -<<,∵1x ,2x 为方程20ax bx c ++=的两个根,∴12c x x a =∴1230x x -<<,故④正确; 故选:B【点睛】本题考查二次函数图象性质,一元二次方程根与系数关系,不等式变形,掌握函数图象性质,注意利用特殊点是解题的关键.11.(2023·四川雅安·统考中考真题)如图,二次函数2y ax bx c =++的图象与x 轴交于()2,0A −,B 两点,对称轴是直线2x =,下列结论中,①0a >;②点B 的坐标为()6,0;③3c b =;④对于任意实数m ,都有242+≥+a b am bm ,所有正确结论的序号为( )A .①②B .②③C .②③④D .③④【答案】C【分析】根据抛物线开口方向可得a 的符号,可对①进行判断;根据抛物线的对称轴2x =,由二次函数的对称性可得B 点坐标,由图象即可对②进行判断;根据点A ()2,0−,点B()6,0代入解析式利用加减消元法可得2480b c −=,从而判定③,再由2x =时函数取最大值判定④. 【详解】解:∵抛物线开☐向下, ∴0a <,故①错误, ∵抛物线与y 轴交于正半轴, ∴0c >, ∴0ac <, 设点B 坐标为()2,0B x∵抛物线对称轴为直线2x =,点A 的坐标为()2,0−,∴2222x −+=,解得:26x =,∴点B 的坐标为()6,0,故②正确,∵点A 的坐标为()2,0−,点B 的坐标为()6,0,∴4203660a b c a b c −+=⎧⎨++=⎩①②∴由9⨯②-①得2480b c −=,即3c b =,故③正确; ∵0a <,抛物线对称轴为直线2x =, ∴当2x =时,42y a b c =++时函数最大值,当x m =时,2y am bm c =++,∴242a b c am bm c ++≥++,即242+≥+a b am bm ,综上所述:正确的结论有②③④, 故选:C .【点睛】本题主要考查二次函数图象与二次函数系数之间的关系,掌握数形结合思想的应用和二次函数图象与系数的关系,掌握二次函数的对称性是解题关键.12.(2023·湖南娄底·统考中考真题)已知二次函数2y ax bx c =++的图象如图所示,给出下列结论:①0abc <;②420a b c −+>;③()a b m am b −>+(m 为任意实数);④若点()13,y −和点()23,y 在该图象上,则12y y >.其中正确的结论是( )A .①②B .①④C .②③D .②④【答案】D【分析】由抛物线的开口向下,与y 轴交于正半轴,对称轴在y 轴的左边,可得a<0,0c >, 0b <,故①不符合题意;当0x =与2x =−时的函数值相等,可得420a b c c −+=>,故②符合题意;当=1x −时函数值最大,可得()a b m am b −≥+,故③不符合题意;由点()13,y −和点()23,y 在该图象上,而()()()314132−−=>−−−=,且离抛物线的对称轴越远的点的函数值越小,可得④符合题意.【详解】解:∵抛物线的开口向下,与y 轴交于正半轴,对称轴在y 轴的左边, ∴a<0,0c >,02b x a =−<,∴0b <,∴0abc >,故①不符合题意; ∵对称轴为直线=1x −,∴当0x =与2x =−时的函数值相等, ∴420a b c c −+=>,故②符合题意; ∵当=1x −时函数值最大,∴2a b c am bm c −+≥++,∴()a b m am b −≥+;故③不符合题意;∵点()13,y −和点()23,y 在该图象上,而()()()314132−−=>−−−=,且离抛物线的对称轴越远的点的函数值越小,∴12y y >.故④符合题意; 故选:D .【点睛】本题考查的是二次函数的图象与性质,熟记二次函数的开口方向,与y 轴的交点坐标,对称轴方程,增减性的判定,函数的最值这些知识点是解本题的关键.13.(2023·四川绵阳·统考中考真题)将二次函数2y x =的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是( )A .b >8B .b >﹣8C .b ≥8D .b ≥﹣8【答案】D【分析】先根据平移原则:上加下减,左加右减写出解析式,再列方程组,有公共点则△≥0,则可求出b 的取值.【详解】解:由题意得:平移后得到的二次函数的解析式为:2=(3)1y x −−, 则2(3)12y x y x b ⎧=−−⎨=+⎩,2(3)12−−=+x x b , 2880−+−=x x b ,△=(﹣8)2﹣4×1×(8﹣b )≥0, b≥﹣8, 故选:D .【点睛】主要考查的是二次函数图象的平移和两函数的交点问题,二次函数与一次函数图象有公共点.【答案】C【分析】根据题意可得:BC=,AP t BQ==,,设mAB a=,则mBC,作PE BC⊥交CB 的延长线于点E,作AF BC⊥交CB的延长线于点F,则可得mAF AB==,))mPE AB PA a t==−=−,从而得到22334216PBQaS t a⎛⎫=−−+⎪⎝⎭,根据PBQS的最大值为3,求出a的值,从而得到4mAB BC AF===,,,最后由平行四边形的面积公式进行计算即可得到答案.【详解】解:根据题意可得:BC,AP t BQ==,,设mAB a=,则mBC ,作PE BC⊥交CB的延长线于点E,作AF BC⊥交CB的延长线于点F,,120ABC∠=︒,60ABF∴∠=︒,mAF AB∴==,))mPE PB AB PA a t==−=−,)22211333322444216PBQaS BQ PE a t t at t a⎛⎫∴=⋅⋅=−=−+=−−+⎪⎝⎭,由图象可得PBQS的最大值为3,23316a∴=,解得:4a=或4a=−(舍去),4a∴=,4mAB BC AF∴===,,,∴平行四边形ABCD 的面积为:224m BC AF ⋅=,故选:C .【点睛】本题主要考查了平行四边形的性质、解直角三角形、二次函数的图象与性质,熟练掌握平行四边形的性质、二次函数的图象与性质,添加适当的辅助线构造直角三角形,是解题的关键. 二、多选题15.(2023·山东潍坊·统考中考真题)已知抛物线253y ax x =−−经过点()1,4−,则下列结论正确的是( )【答案】BC 【分析】将点()1,4−代入可求出二次函数的解析式,再根据二次函数的图象与性质、二次函数与一元二次方程的联系逐项判断即可得. 【详解】解:将点()1,4−代入253y ax x =−−得:534a +−=,解得2a =,22549253248y x x x ⎛⎫∴=−−=−−⎪⎝⎭∴抛物线的开口向上,抛物线的对称轴是54x =,选项A 错误,选项B 正确;方程22530x x −−=的根的判别式()()25423490∆=−−⨯⨯−=>,∴方程22530x x −−=有两个不相等的实数根,∴抛物线与x 轴有两个交点,选项C 正确;由二次函数的性质可知,这个抛物线的开口向上,且当54x =时,y 取得最小值498−,∴当498t <−时,253y ax x =−−与y t =没有交点, ∴当498t <−时,关于x 的一元二次方程2530ax x t −−−=没有实根,选项D 错误;故选:BC .【点睛】本题考查了二次函数的图象与性质、二次函数与一元二次方程的联系,熟练掌握二次函数的图象与性质是解题关键.三、解答题(1)求方案一中抛物线的函数表达式;(2)在方案一中,当3m AB =时,求矩形框架ABCD 的面积1S 并比较【答案】(1)21493y x x=−+ (2)218m ,12S S >【分析】(1)利用待定系数法则,求出抛物线的解析式即可;(2)在21493y x x=−+中,令3y =得:214393x x =−+,求出3x =或9x =,得出()936m BC =−=,求出()213618m S AB BC ⋅=⨯==,然后比较大小即可.【详解】(1)解:由题意知,方案一中抛物线的顶点()64P ,,设抛物线的函数表达式为()264y a x =−+,把()00O ,代入得:()20064a =−+,解得:19a =−,∴()2211464993y x x x =−−+=−+;∴方案一中抛物线的函数表达式为21493y x x=−+; (2)解:在21493y x x =−+中,令3y =得:214393x x=−+, 解得3x =或9x =, ∴()936m BC =−=,∴()213618m S AB BC ⋅=⨯==;∵18> ∴12S S >.【点睛】本题主要考查了二次函数的应用,求二次函数解析式,解题的关键是熟练掌握待定系数法则,求出函数解析式.(1)求y 关于x 的函数表达式;(2)求运动员从起跳点到入水点的水平距离【答案】(1)y 关于x 的函数表达式为2210y x x =−++(2)运动员从起跳点到入水点的水平距离OB 的长为(1m【分析】(1)由题意得抛物线的对称轴为1x =,经过点()010,,()37,,利用待定系数法即可求解;(2)令0y =,解方程即可求解.【详解】(1)解:由题意得抛物线的对称轴为1x =,经过点()010,,()37,,设抛物线的表达式为2y ax bx c =++,∴1210937ba c abc ⎧−=⎪⎪=⎨⎪++=⎪⎩,解得1210a b c =−⎧⎪=⎨⎪=⎩,∴y 关于x 的函数表达式为2210y x x =−++;(2)解:令0y =,则22100x x −++=,解得1x =,∴运动员从起跳点到入水点的水平距离OB的长为(1m .【点睛】本题考查了二次函数在实际问题中的应用,数形结合并熟练掌握运用待定系数法求抛物线的解析式是解题的关键.(1)求y 与x 之间的函数关系式;(2)当护眼灯销售单价定为多少元时,商店每月出售这种护眼灯所获的利润最大?最大月利润为多少元? 【答案】(1)140y x =−+(2)护眼灯销售单价定为80元时,商店每月出售这种护眼灯所获的利润最大,最大月利润为2400元 【分析】(1)用待定系数法求解即可;(2)设销售利润为W 元,列出W 关于x 的函数关系式,即可求得最大利润. 【详解】(1)解:由题意设(0)y kx b k =+≠,由表知,当50x =时,90y =;当60x =时,80y =;以上值代入函数解析式中得:50906080k b k b +=⎧⎨+=⎩,解得:1140k b =−⎧⎨=⎩, 所以y 与x 之间的函数关系式为140y x =−+; (2)解:设销售利润为W 元, 则(40)(40)(140)W x y x x =−=−−+,整理得:21805600W x x =−+−,由于销售单价不低于进价,且不高于进价的2倍,则4080x ≤≤,∵10−<,2(90)2500W x =−−+,∴当90x ≤时,W 随x 的增大而增大,∴当80x =时,W 有最大值,且最大值为2400;答:当护眼灯销售单价定为80元时,商店每月出售这种护眼灯所获的利润最大,最大月利润为2400元.任务:(1)不等式260x x −−<的解集为_____________;(2)3种方法都运用了___________的数学思想方法(从下面选项中选1个序号即可);A .分类讨论B .转化思想C .特殊到一般D .数形结合(3)请你根据方法3的思路,画出函数图像的简图,并结合图像作出解答. 【答案】(1)23x −<< (2)D(3)图像见解析,不等式260x x −−<的解集为23x −<<【分析】(1)如图1,作26y x x =−−的图像,由方法1可知,不等式260x x −−<的解集为23x −<<; (2)由题意知,3种方法都运用了数形结合的数学思想方法; (3)如图2,作函数1y x =−与6y x =的图像,由图像可得,260x x −−<的解集为20x −<<,或03x <<,进而可得260x x −−<的解集.【详解】(1)解:如图1,作26y x x =−−的图像,由方法1可知,不等式260x x −−<的解集为23x −<<,故答案为:23x −<<;(2)解:由题意知,3种方法都运用了数形结合的数学思想方法, 故选:D ;(3)解:如图2,作函数1y x =−与6y x =的图像,由图像可得,260x x −−<的解集为20x −<<,或03x <<,综上,260x x −−<的解集为23x −<<.【点睛】本题考查了数形结合求一元二次不等式的解集,作二次函数、一次函数、反比例函数的图像.解题的关键在于理解题意并正确的作函数图象.20.(2023·辽宁·统考中考真题)电商平台销售某款儿童组装玩具,进价为每件100元,在销售过程中发现,每周的销售量y (件)与每件玩具售价x (元)之间满足一次函数关系(其中100160x ≤≤,且x 为整数).当每件玩具售价为120元时,每周的销量为80件;当每件玩具售价为140元时,每周的销量为40件. (1)求y 与x 之间的函数关系式;(2)当每件玩具售价为多少元时,电商平台每周销售这款玩具所获的利润最大?最大周利润是多少元? 【答案】(1)2320y x =−+(其中100160x ≤≤,且x 为整数)(2)当每件玩具售价为130元时,电商平台每周销售这款玩具所获的利润最大,最大周利润是1800元 【分析】(1)设y 与x 之间的函数关系式为y kx b =+,利用待定系数法求解即可;(2)设每周销售这款玩具所获的利润为W ,列出W 关于x 的二次函数关系式,化为顶点式即可求解. 【详解】(1)解:设y 与x 之间的函数关系式为y kx b =+,由已知得1208014040k b k b +=⎧⎨+=⎩,解得2320k b =−⎧⎨=⎩,因此y 与x之间的函数关系式为2320y x =−+(其中100160x ≤≤,且x 为整数); (2)解:设每周销售这款玩具所获的利润为W , 由题意得()()()2232010021301800=−+−=−−+W x x x ,20−<,∴W 关于x 的二次函数图象开口向上,100160x ≤≤,且x 为整数,∴当130x =时,W 取最大值,最大值为1800,即当每件玩具售价为130元时,电商平台每周销售这款玩具所获的利润最大,最大周利润是1800元. 【点睛】本题考查一次函数与二次函数的实际应用,列出周利润W 关于x 的二次函数关系式是解题的关键.21.(2023·江苏宿迁·统考中考真题)某商场销售AB 、两种商品,每件进价均为20元.调查发现,如果售出A 种20件,B 种10件,销售总额为840元;如果售出A 种10件,B 种15件,销售总额为660元.(1)求A B 、两种商品的销售单价.(2)经市场调研,A 种商品按原售价销售,可售出40件,原售价每降价1元,销售量可增加10件;B 种商品的售价不变,A 种商品售价不低于B 种商品售价.设A 种商品降价m 元,如果AB 、两种商品销售量相同,求m 取何值时,商场销售AB 、两种商品可获得总利润最大?最大利润是多少? 【答案】(1)A 的销售单价为30元、B 的销售单价为24元(2)当5m =时,商场销售AB 、两种商品可获得总利润最大,最大利润是810元 【分析】(1)设A 的销售单价为x 元、B 的销售单价为y 元,根据题中售出A 种20件,B 种10件,销售总额为840元;售出A 种10件,B 种15件,销售总额为660元列方程组求解即可得到答案; (2)设利润为w ,根据题意,得到()2105810w m =−−+,结合二次函数性质及题中限制条件分析求解即可得到答案.【详解】(1)解:设A 的销售单价为x 元、B 的销售单价为y 元,则20108401015660x yx y +=⎧⎨+=⎩,解得3024x y =⎧⎨=⎩,答:A 的销售单价为30元、B 的销售单价为24元; (2)解:A 种商品售价不低于B 种商品售价,3024m ∴−≥,解得6m ≤,即06m ≤≤,设利润为w ,则()()()401030202420w m m =+⨯−−+−⎡⎤⎣⎦210100560m m =−++()2105810m =−−+,100−<,w ∴在5m =时能取到最大值,最大值为810,∴当5m =时,商场销售AB 、两种商品可获得总利润最大,最大利润是810元.【点睛】本题考查二元一次方程组及二次函数解实际应用题,读懂题意,根据等量关系列出方程组,根据函数关系找到函数关系式分析是解决问题的关键.素材2根据体育老师建议,第二次练习时,小林在正前方 问题解决 任务1 【答案】任务一:4m ;任务二:m 15;任务三:应该尽量提高掷出点的高度、尽量提高掷出点的速度、选择适当的掷出仰角【分析】任务一:建立直角坐标系,由题意得:抛物线的顶点坐标为()1,1.8,设抛物线的解析式为()21 1.8y a x =−+,过点()0,1.6,利用待定系数法求出解析式,当0y =时求出x 的值即可得到OB ;任务二:建立直角坐标系,求出任务二的抛物线解析式,得到顶点纵坐标,与任务一的纵坐标相减即可; 任务三:根据题意给出合理的建议即可.【详解】任务一:建立如图所示的直角坐标系,由题意得:抛物线的顶点坐标为()1,1.8,设抛物线的解析式为()21 1.8y a x =−+,过点()0,1.6,∴ 1.8 1.6a +=, 解得0.2a =−, ∴()20.21 1.8y x =−−+,当0y =时,()20.21 1.80x −−+=,得14,2x x ==−(舍去),∴素材1中的投掷距离OB 为4m ; (2)建立直角坐标系,如图,设素材2中抛物线的解析式为2y ax bx c =++, 由题意得,过点()()()0,1.6,1,2.45,8,0,∴1.62.456480c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得0.1511.6a b c =−⎧⎪=⎨⎪=⎩,∴20.15 1.6y x x =−++∴顶点纵坐标为()()2240.15 1.61449440.1515ac b a ⨯−⨯−−==⨯−,49221.81515−=(m ),∴素材2和素材1中球的最大高度的变化量为22m 15;任务三:应该尽量提高掷出点的高度、尽量提高掷出点的速度、选择适当的掷出仰角.【点睛】此题考查了二次函数的实际应用,求函数解析式,求抛物线与坐标轴的距离,正确理解题意建立恰当的直角坐标系是解题的关键.(1)从21(0)y ax a =+≠,(0)ky k x=≠,20.04y x bx c =−++中,选择适当的函数模型分别模拟两种场景下x 变化的函数关系,并求出相应的函数表达式;(2)查阅文献可知,该化学试剂发挥作用的最低质量为3克.在上述实验中,该化学试剂在哪种场景下发挥作用的时间更长?【答案】(1)场景A 中y 随x 变化的函数关系为20.040.121y x x =−−+,场景B 中y 随x 变化的函数关系为21y x =−+(2)场景B【分析】(1)由图象可知,场景A 中y 随x 变化的函数关系为20.04y x bx c =−++,将()10,16,()20,3代入20.04y x bx c =−++,进而可得20.040.121y x x =−−+;场景B 中y 随x 变化的函数关系为21(0)y ax a =+≠,将()20,1代入,进而可得21y x =−+;(2)场景A 中当3y =时,20x =;场景B 中,将3y =代入21y x =−+,解得,24x =,判断作答即可.【详解】(1)解:由图象可知,场景A 中y 随x 变化的函数关系为20.04y x bx c =−++, 将()10,16,()20,3代入20.04y x bx c =−++,得220.041010160.0420203b c b c ⎧−⨯++=⎨−⨯++=⎩,解得0.121b c =−⎧⎨=⎩,∴20.040.121y x x =−−+;场景B 中y 随x 变化的函数关系为21(0)y ax a =+≠, 将()20,1,代入21y ax =+,得20211a +=,解得1a =−,∴21y x =−+;(2)解:场景A 中当3y =时,20x =;场景B 中,将3y =代入21y x =−+,得321x =−+,解得24x =, ∵2420>,∴该化学试剂在场景B 下发挥作用的时间更长.【点睛】本题考查了函数图象,一次函数解析式,二次函数解析式.解题的关键在于对知识的熟练掌握与灵活运用.【答案】(1)4万元 (2)8m =(3)当A ,B 两个项目分别投入28万,4万元时,一年后获得的收益之和最大,最大值是16万元. 【分析】(1)把10x =代入25A y x=可得答案;(2)当x m =时,可得221255m m m=−+,再解方程可得答案;(3)设投入到B 项目的资金为x 万元,则投入到A 项目的资金为()32x −万元,设总收益为y 万元,A By y y =+21864555x x =−++,而032x ≤≤,再利用二次函数的性质可得答案.【详解】(1)解:∵投资A 项目一年后的收益A y (万元)与投入资金x (万元)的函数表达式为:25A y x =,当10x =时,21045A y =⨯=(万元); (2)∵对A ,B 两个项目投入相同的资金m (0m >)万元,一年后两者获得的收益相等, ∴221255m m m=−+,整理得:280m m −=,解得:18m =,20m =(不符合题意), ∴m 的值为8. (3)2125B y x x=−+设投入到B 项目的资金为x 万元,则投入到A 项目的资金为()32x −万元,设总收益为y 万元,∴A B y y y =+()22132255x x x =−−+ 21864555x x =−++, 而032x ≤≤,∴当854125x =−=⎛⎫⨯− ⎪⎝⎭时,132641616555y =−⨯++=最大(万元);∴当A ,B 两个项目分别投入28万,4万元时,一年后获得的收益之和最大,最大值是16万元. 【点睛】本题考查的是正比例函数的性质,一元二次方程的解法,列二次函数的解析式,二次函数的性质,理解题意,选择合适的方法解题是关键.25.(2023·贵州·统考中考真题)如图①,是一座抛物线型拱桥,小星学习二次函数后,受到该图启示设计了一建筑物造型,它的截面图是抛物线的一部分(如图②所示),抛物线的顶点在C 处,对称轴OC 与水平线OA 垂直,9OC =,点A 在抛物线上,且点A 到对称轴的距离3OA =,点B 在抛物线上,点B 到对称轴的距离是1.(1)求抛物线的表达式;(2)如图②,为更加稳固,小星想在OC 上找一点P ,加装拉杆,PA PB ,同时使拉杆的长度之和最短,请你帮小星找到点P 的位置并求出坐标;(3)为了造型更加美观,小星重新设计抛物线,其表达式为221(0)y x bx b b =−++−>,当46x ≤≤时,函数y 的值总大于等于9.求b 的取值范围.【答案】(1)29y x =−+(2)点P 的坐标为()0,6(3)4613b ≥【分析】(1)设抛物线的解析式为2y ax k =+,将()09C ,,()3,0A 代入即可求解; (2)点B 关于y 轴的对称点B ',则PA PB PA PB AB ''+=+≥,求出直线AB '与y 轴的交点坐标即可; (3)分05b <≤和5b >两种情况,根据最小值大于等于9列不等式,即可求解. 【详解】(1)解:抛物线的对称轴与y 轴重合,∴设抛物线的解析式为2y ax k =+,9OC =,3OA =,∴()09C ,,()3,0A ,将()09C ,,()3,0A 代入2y ax k =+,得:2930k a k =⎧⎨⋅+=⎩,解得91k a =⎧⎨=−⎩,∴抛物线的解析式为29y x =−+;(2)解:抛物线的解析式为29y x =−+,点B 到对称轴的距离是1, 当1x =时,198y =−+=, ∴()1,8B ,作点B 关于y 轴的对称点B ',则()1,8B '−,B P BP '=,∴PA PB PA PB AB ''+=+≥,∴当B ',B ,A 共线时,拉杆,PA PB 长度之和最短,设直线AB '的解析式为y mx n =+,将()1,8B '−,()3,0A 代入,得038m n m n =+⎧⎨=−+⎩,解得26m n =−⎧⎨=⎩, ∴直线AB '的解析式为26y x =−+,当0x =时,6y =,∴点P 的坐标为()0,6,位置如下图所示:(3)解:221(0)y x bx b b =−++−>中10a =−<,∴抛物线开口向下,当05b <≤时,在46x ≤≤范围内,当6x =时,y 取最小值,最小值为:262611337b b b −+⨯+−=−则13379b −≥, 解得4613b ≥,∴46513b ≤≤; 当5b >时,在46x ≤≤范围内,当4x =时,y 取最小值,最小值为:24241917b b b −+⨯+−=−则9179b −≥, 解得269b ≥,∴5b >;综上可知,46513b ≤≤或5b >, ∴b 的取值范围为4613b ≥.【点睛】本题考查二次函数的实际应用,涉及求二次函数解析式,求一次函数解析式,根据对称性求线段的最值,抛物线的增减性等知识点,解题的关键是熟练掌握二次函数的图象和性质,第3问注意分情况讨论.四、填空题26.(2023·黑龙江牡丹江·统考中考真题)将抛物线()23y x =+向下平移1个单位长度,再向右平移 个单位长度后,得到的新抛物线经过原点. 【答案】2或4/4或2 【分析】先求出抛物线()23y x =+向下平移1个单位长度后与x 的交点坐标,然后再求出新抛物线经过原点时平移的长度. 【详解】解:抛物线()23y x =+向下平移1个单位长度后的解析式为()231y x =+−,令0y =,则()2310x +−=, 解得,122,4x x =−=−,∴抛物线()231y x =+−与x 的交点坐标为()2,0−和()4,0−,∴将抛物线()231y x =+−向右平移2个单位或4个单位后,新抛物线经过原点.故答案为:2或4.【点睛】此题考查了二次函数图象的平移与几何变换,利用抛物线解析式的变化规律:左加右减,上加下减是解题关键.【答案】4【分析】利用配方法把二次函数一般式化为顶点式,即可求解. 【详解】解:利用配方法,将一般式化成顶点式: 234y x x =−−+232524x =−++()二次函数开口向下,。
2023年中考数学总复习一轮讲练测()专题14二次函数的图象与性质(讲练)1.理解二次函数的意义,掌握二次函数的表达式,熟练应用待定系数法求二次函数的表达式;2.会画二次函数的图象,掌握二次函数的性质1.二次函数的定义:一般地,形如(其中a,b,c是常数,a≠0)的函数叫做二次函数.2.二次函数的三种表达式:(1)一般式:(a,b,c是常数,a≠0).(2)顶点式:(a,h,k是常数,a≠0),顶点坐标是.(3)交点式:(a,x1,x2是常数,a≠0),其中x1,x2是二次函数与x轴的交点的横坐标,图象的对称轴为直线.3.二次函数的图象与性质:二次函数y=ax2+bx+c(a≠0)的图象是一条抛物线,当a>0时,抛物线的开口,这时当x≤-b2a时,y随x的增大而;当x≥-b2a时,y随x的增大而;当x=-b2a时,y有最值.当a<0时,抛物线开口,这时当x≤-b2a时,y随x的增大而;当x≥-b2a时,y随x的增大而;当x=-b2a时,y有最值.该抛物线的对称轴是直线,顶点坐标是4.二次函数的图象的平移:平移规律:左右平移由h值决定:左加右减;上下平移由k值决定:上加下减.二次函数与x轴交点情况5.对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0)△=b2﹣4ac决定抛物线与x轴的交点个数:①△=b2﹣4ac>0时,抛物线与x轴有2个交点;②△=b2﹣4ac=0时,抛物线与x轴有1个交点;③△=b2﹣4ac<0时,抛物线与x轴没有交点.考点一、二次函数的定义例1(2022秋•义乌市月考)若函数y=是二次函数,即m的值是()A.﹣1B.﹣1或3C.2D.3【变式训练】1.(2022•苏州模拟)下列各式中,y是关于x的二次函数的是()A.y=4x+2B.y=ax2+1C.y=3x2+5﹣4x D.y=2.(2021秋•林口县期末)是二次函数,则m的值是()A.m≠0B.m=±1C.m=1D.m=﹣13.(2022秋•禹州市期中)若函数y=(m﹣3)x|m|﹣1+5是关于x的二次函数,则m=()A.﹣3B.3C.3或﹣3D.2考点二、二次函数的图象例2(2022秋•舟山月考)在同一直角坐标系中,函数y=ax+a和函数y=ax2+x+2(a是常数,且a≠0)的图象可能是()A.B.C.D.【变式训练】1.(2022秋•巧家县期中)直线y=ax+b与抛物线y=ax2+bx+2在同一平面直角坐标系中的图象可能是()A.B.C.D.2.(2022秋•洪山区校级月考)在同一坐标系中,二次函数y=ax2+bx+c(b>0)与一次函数y=ax+c的大致图象可能是()A.B.C.D.3.(2022秋•凉州区校级月考)二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象为()A.B.C.D.考点三、二次函数的性质例3(2022秋•淳安县期中)已知二次函数y=ax2+bx+c(a,b,c为常数,a>0)的图象经过点(﹣2,0)和(2,3),该函数图象的对称轴为直线x=m,则下列说法正确的是()A.0<m≤2B.m<0C.m>0D.﹣2≤m<0【变式训练】1.(2021秋•新会区期末)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表.下列结论错误的是()x…﹣10123…y…03430…A.函数图象开口向下B.当x=1时,y取最大值4C.对称轴是直线x=1D.当x>1时,y的值随x的增大而增大2.(2021秋•孝义市期末)对于二次函数y=﹣x2﹣2x+m(m为常数),当y随x的增大而减小时,x的取值范围是()A.x>﹣1B.x>﹣2C.x>1D.x>03.(2021秋•榆阳区期末)如表中所列的x,y的5对值是二次函数y=ax2+bx+c的图象上的点所对应的坐标:x…﹣2﹣1034…y…1163611…若(x1,y1),(x2,y2)是该函数图象上的两点,根据表中信息,以下说法正确的是()A.该函数的最小值为3B.这个函数图象的开口向上C.当x1<x2时,y1<y2D.当y1>y2时,x1<x24.(2022春•沙坪坝区校级月考)一列自然数0,1,2,3,⋯,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是()①当原数取50时,原数与对应新数的差最大②原数与对应新数的差不可能等于零③原数与对应新数的差,随着原数的增大而增大④当原数与对应新数的差等于21时,原数等于30和70A.①②B.①③C.①④D.②③考点四、二次函数的图象与系数关系例4(2022•金华模拟)已知二次函数y=ax2+bx+c的图象如图所示,与x轴有个交点(﹣1,0),有以下结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(其中m≠1).其中所有正确结论的个数是()A.3个B.2个C.1个D.0个【变式训练】1.(2021秋•昌吉市校级期末)已知抛物线y=ax2+bx+c(a=0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A.a>0B.b<0C.c<0D.a+b+c>02.(2022春•成都月考)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是直线x=﹣1,且过点(﹣3,0),下列说法不正确的是()A.abc<0B.2a﹣b=0C.3a+c=0D.若(﹣5,y1),(3,y2)是抛物线上两点,y1>y23.(2022•东港区校级二模)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣1,则下列结论:①abc>0,②a+b<﹣c,③4a﹣2b+c>0,④3b+2c<0,⑤a﹣b>m(am+b)(其中m为任意实数).中正确的个数是()A.2个B.3个C.4个D.5个考点五、二次函数的点的坐标特征例5(2022秋•宁波月考)已知点(﹣1,y1),(﹣2,y2),(﹣4,y3)在二次函数y=﹣2x2﹣8x+c的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y3<y2<y1C.y3<y1<y2D.y2<y3<y1【变式训练】1.(2022春•九龙坡区校级月考)已知A(﹣,y1),B(,y2),C(﹣,y3)是二次函数y=﹣x2+4x ﹣k的图象上的三点,则y1,y2,y3的大小关系是()A.y1=y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y22.(2022秋•范县期中)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=a(x+1)2+k(a>0)上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y23.(2022秋•林州市校级月考)在函数y=x2﹣2x+a(a为常数)的图象上有三个点(﹣1,y1),(﹣2,y2),(1,y3),则函数值y1,y2,y3的大小关系为()A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y34.(2022秋•闽清县校级月考)已知抛物线y=x2﹣1与y轴交于点A,与直线y=kx(k为任意实数)相交于B,C两点,则下列结论中,不正确的是()A.存在实数k,使得△ABC为等腰三角形B.存在实数k,使得△ABC的内角中有两个角为45°C.存在实数k,使得△ABC为直角三角形D.存在实数k,使得△ABC为等边三角形考点六、二次函数与几何变换例6(2022秋•拱墅区校级期中)抛物线y=x2﹣4x+3可以由抛物线y=x2平移得到,则下列平移方法正确的是()A.先向左平移2个单位,再向上平移7个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移7个单位D.先向右平移2个单位,再向下平移1个单位【变式训练】1.(2022•珙县模拟)抛物线y=x2+4x﹣1的顶点坐标向上平移一个单位后,再向右平移一个单位后的坐标为()A.(4,﹣1)B.(2,﹣1)C.(﹣1,﹣4)D.(1,﹣4)2.(2022秋•庐阳区校级期中)将抛物线y=x2先向右平移4个单位,再向下平移3个单位,所得抛物线表达式为()A.y=(x﹣4)2﹣3B.y=(x﹣4)2+3C.y=(x+4)2+3D.y=(x+4)2﹣33.(2022秋•林州市月考)在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经过变换后得到抛物线y=(x+3)(x﹣5),则这个变换可以是()A.向左平移2个单位长度B.向右平移2个单位长度C.向左平移8个单位长度D.向右平移8个单位长度4.(2022秋•林州市校级月考)将抛物线y=(x+1)2的图象位于直线y=4以上的部分向下翻折,得到如图图象,若直线y=x+m与此图象只有四个交点,则m的取值范围是()A.B.C.D.考点七、二次函数的最值例7(2022秋•萧山区月考)已知非负数a,b,c,满足a﹣b=2且c+3a=9,设y=a2+b+c的最大值为m,最小值为n,则m﹣n的值是()A.1B.2C.3D.4【变式训练】1.(2022秋•宁明县月考)二次函数y=﹣(x+2)2﹣5的最大值是()A.5B.﹣5C.2D.﹣22.(2022秋•思明区校级期中)已知二次函数的图象(0≤x≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是()A.函数有最小值1,有最大值3B.函数有最小值﹣1,有最大值0C.函数有最小值﹣1,有最大值3D.函数有最小值﹣1,无最大值3.(2022秋•番禺区校级期中)二次函数y=﹣x2﹣2x+c2﹣2c在﹣3≤x≤2的范围内有最小值为﹣5,则c的值()A.3或﹣1B.﹣1C.﹣3或1D.3考点八、二次函数与坐标轴交点例8(2022秋•舟山期中)在研究函数图象的性质时,若将自变量x变为|x|,则函数图象变化为:保留y轴右侧的图象,y轴左侧的图象变为右侧图象关于y轴的对称图形.已知抛物线y=﹣x2+2x+3的图象,则对于y=﹣x2+2|x|+3,当y>0时,x的取值范围是()A.﹣1<x<3B.﹣1<x<1C.﹣3<x<3D.x<﹣1或x>3【变式训练】1.(2022秋•庐阳区校级期中)抛物线y=x2+x+c与x轴只有一个公共点,则c的值为()A.﹣B.﹣4C.D.42.(2022•海陵区校级三模)如图,已知二次函数y=ax2+bx+c的图象与x轴交于(﹣3,0),顶点是(﹣1,m),则以下结论:①若y≥c,则x≤﹣2或x≥0;②b+c=m.其中正确的是()A.①B.②C.都对D.都不对3.(2022秋•庐阳区校级期中)已知二次函数y=﹣x2+bx+c的图像与x轴的两个交点分别是(﹣n,0)和(n+2,0),且抛物线还经过点(2,y1)和(﹣2,y2),则下列关于y1,y2的大小关系判断正确的是()A.y1=y2B.y1>y2C.y1<y2D.y1与y2的大小无法比较考点九、二次函数与方程不等式例9(2022秋•桐庐县期中)若二次函数y=ax2+bx+c的图象如图所示,则不等式a(x﹣2)2+b(x﹣2)+c <0的解集为()A.x<1或x>3B.x>3C.x<﹣1D.x<3或x>5【变式训练】1.(2022秋•朝阳区校级期中)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,有下列4个结论:①abc>0;②b2﹣4ac>0;③关于x的方程ax2+bx+c=0的两个根是x1=﹣2,x2=3;④关于x的不等式ax2+bx+c>0的解集是x>﹣2.其中正确的结论有()个.A.1B.2C.3D.42.(2022•罗庄区二模)如图,已知抛物线y=x2+bx+c与直线y=x交于(1,1)和(3,3)两点,有以下结论:①b2﹣4c>0;②3b+c+6=0;③当1<x<3时,x2+(b﹣1)x+c<0;④当x>2时,x2+bx+c>.其中正确的个数是()A.1B.2C.3D.43.(2021秋•微山县期末)如图,二次函数y=x2﹣2x﹣3的图象与一次函数y=x+b的图象相交于点A,B.若点A的坐标是.那么不等式x2﹣2x﹣3<x+b的解集是()A.B.或C.﹣1<x<3D.x<﹣1或x>34.(2021秋•梁山县期末)如图是抛物线图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1;其中正确的是()A.①②③B.①③④C.②④⑤D.①③⑤考点十、待定系数法求二次函数解析式例10(2022秋•温州校级月考)如图,抛物线的顶点坐标为(1,﹣4),且图象经过点(3,0).(1)求抛物线的表达式;(2)若在y轴正半轴上取一点P(0,m),过点P作x轴的平行线,分别交抛物线于A,B两点(A在B 点左侧),若P A:PB=1:2,求m的值.【变式训练】1.(2022秋•林州市月考)如图,已知直线y=﹣2x+m与抛物线相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上.(1)求m的值;(2)求抛物线的解析式.2.(2022秋•朝阳区校级月考)已知抛物线y=x2+bx+c经过A(﹣1,0)、B(6,0)两点.(1)请求出抛物线的解析式;(2)当0<x<4时,请直接写出y的取值范围.3.(2022秋•宁明县月考)已知抛物线经过点(3,﹣1),顶点坐标为(2,﹣2).(1)求抛物线对应的函数表达式;(2)若点P(t,y1),(t+3,y2)都在抛物线上,且y1=y2,求P,Q两点的坐标.4.(2022秋•西城区校级月考)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…﹣101 2.53…y=ax2+bx+c…m1﹣2n﹣2…根据以上列表,回答下列问题:(1)直接写出c的值和该二次函数图象的对称轴;(2)求此二次函数的解析式;(3)在(2)条件下,求当﹣1≤x≤3.8时,函数值y的取值范围.考点十一、二次函数的推理计算与证明例11(2022秋•西湖区月考)设二次函数y=(x+1)(ax+2a+2)(a是常数,a≠0).(1)若a=1,求该函数图象的顶点坐标.(2)若该二次函数图象经过(﹣1,1),(﹣2,3),(0,﹣2)三个点中的一个点,求该二次函数的表达式.(3)若二次函数图象经过(x1,y1),(x2,y2)两点,当x1+x2=2,x1<x2时,y1>y2,求证:a<﹣.【变式训练】1.(2022•永嘉县模拟)已知二次函数y=2x2﹣bx+c的图象经过A(1,n),B(3,n).(1)用含n的代数式表示c.(2)若二次函数y=2x2﹣bx+c的最小值为,求n的值.2.(2022•绍兴)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.3.(2021•河西区一模)已知函数y=x2+bx+c(b,c为常数)的图象经过点(﹣2,4).(Ⅰ)当b=2时,求抛物线的顶点坐标;(Ⅱ)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(Ⅲ)若该函数的图象不经过第三象限,当﹣3≤x≤4时,函数的最大值与最小值之差为40,求b的值.。
专题2.8 二次函数y=ax2+k(a≠0)的图像与性质(基础篇)(专项练习)-2021-2022学年九年级数学下册基础知识专项讲练(北师大版)专题2.8 二次函y=ax2+k(a≠0)的图像与性质(基础篇) (专项练习) 一、单选题知识点一、二次函数()20y ax k a =+≠的开口方向、对称轴、顶点坐标、最值1.抛物线y =x 2﹣3的顶点坐标、对称轴是( ) A .(0,3),x =3B .(0,﹣3),x =0C .(3,0),x =3D .(3,0),x =02.下列各点中,在抛物线24y x =-上的是( ) A .()1,3B .()1,3--C .()1,5-D .()1,5--3.抛物线y =-3x 2+4的开口方向和顶点坐标分别是( ). A .向下,(0,-4) B .向下,(0,4) C .向上,(0,4)D .向上,(0,-4)4.关于二次函数224y x =+,下列说法错误..的是( ) A .它的图象开口方向向上 B .它的图象顶点坐标为(0,4) C .它的图象对称轴是y 轴D .当0x =时,y 有最大值45.若在同一直角坐标系中,作23y x =,22y x =-,221y x =-+的图像,则它们( ) A .都关于y 轴对称 B .开口方向相同C .都经过原点D .互相可以通过平移得到知识点二、二次函数()20y ax k a =+≠图象的增减性6.在平面直角坐标系xOy 中,抛物线y =﹣x 2+2x .点D (n ,y 1),E (3,y 2)在抛物线上,若y 1<y 2,则n 的取值范围是( ) A .n >3或n <﹣1B .n >3C .n <1D .n >3或n <17.已知函数y=x 2﹣2,当函数值y 随x 的增大而减小时,x 的取值范围是( ) A .x <2B .x >0C .x >﹣2D .x <08.下列函数中,当x >0时,y 随x 的增大而增大的是( ) A .y x 1=-+ B .2y x 1=-C .1y x=D .2y x 1=-+9.点11(0.5,)P y -,22(2.5,)Py ,33(5,)P y -均在二次函数22y x x =-+的图象上,则1y ,2y ,3y 的大小关系是( )A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>10.已知点()()()25,,521A m B m C m n --++,,,在同一个函数的图象上,这个函数可能是( ) A .2y x =+B .25y x =--C .25y x =+D .2y x=-知识点三、二次函数()20y ax k a =+≠的图象11.2y ax k =+的图象可能是( )A .B .C .D .12.已知函数21(1)2(1)x x y x x⎧+≥-⎪=⎨<-⎪⎩则下列图像正确的是( )A .B .C.D.13.在平面直角坐标系中,二次函数y=x2+2的大致图象可能是()A.B.C.D.14.二次函数y=-x2-1的图象大致是()A.B.C.D.15.二次函数22=--的图象大致是()y xA.B.C.D.知识点四、二次函数()20y ax k a =+≠的性质综合16.下列关于抛物线y =2x 2﹣3的说法,正确的是( ) A .抛物线的开口向下B .抛物线的对称轴是直线x =1C .抛物线与x 轴有两个交点D .抛物线y =2x 2﹣3向左平移两个单位长度可得抛物线y =2(x ﹣2)2﹣317.二次函数22y x =-的图象是一条抛物线,下列关于该抛物线的说法正确的是( ) A .抛物线开口向下B .当0x =时,函数的最大值是2-C .抛物线的对称轴是直线2x =D .抛物线与x 轴有两个交点18.关于二次函数y =﹣2x 2+1,以下说法正确的是( ) A .开口方向向上B .顶点坐标是(﹣2,1)C .当x <0时,y 随x 的增大而增大D .当x =0时,y 有最大值﹣1219.二次函数221y x =-的图象是一条抛物线,下列说法中正确的是( ) A .抛物线开口向下B .抛物线经过点1,1C .抛物线的对称轴是直线1x =D .抛物线与x 轴有两个交点20.关于二次函数221y x =-+,则下列说法正确的是( ) A .开口方向向上 B .当x <0时,y 随x 的增大而增大 C .顶点坐标是(-2,1)D .当x =0时,y 有最小值1知识点五、二次函数()20y ax k a =+≠图形与其他函数图象的判定21.直线y=ax+c 与抛物线y=ax 2+c 的图象画在同一个直角坐标系中,可能是下面的( )A .B .C .D .22.函数ay x=与20()y ax a a =--≠在同一直角坐标系中的大致图象可能是( )A .B .C .D .23.用min{a ,b }表示a ,b 两数中的最小数,若函数{}22min 1,1y x x =+-,则y 的图象为( )A .B .C .D .24.二次函数y =x 2+1的图象大致是( )A .B .C .D .25.二次函数y =x 2+1的图象大致是( )A .B .C .D .26.在同一直角坐标系中2y ax b =+与()y ax b a 0,b 0=+≠≠图象大致为( )A .B .C .D .27.点()()1122,,,x y x y 均在抛物线21y x =-上,下列说法正确的是( )A .若12y y =,则12x x =B .若12x x =-,则12y y =-C .若120x x <<,则12y y >D .若120x x <<,则12y y >二、填空题知识点一、二次函数()20y ax k a =+≠的开口方向、对称轴、顶点坐标、最值28.抛物线223y x =--的开口方向_______,对称轴是_____,顶点坐标是_______. 29.通过_______法画出221y x =+和221y x =-的图像:通过图像可知:221y x =+的开口方向________,对称轴_______,顶点坐标___________.221y x =-的开口方向________,对称轴_______,顶点坐标___________.30.写出顶点坐标为(0,-3),开口方向与抛物线2y x =-的方向相反,形状相同的抛物线解析式_________________________.31.抛物线2y ax k =+的图象相当于把抛物线2y ax =的图象______(k >0)或______(k <0)平移______个单位.32.一抛物线的形状,开口方向与23312y x x =-+相同,顶点在(-2,3),则此抛物线的解析式为_______.知识点二、二次函数()20y ax k a =+≠图象的增减性33.已知点P (﹣2,y 1)和点Q (﹣1,y 2)都在二次函数2y x c =-+的图象上,那么1y 与2y 的大小关系是_____.34.已知二次函数y =-x 2+4,当-2≤x≤3时,函数的最小值是-5,最大值是_________. 35.当m=______时抛物线22(1)9m m y m x +=++开口向下,对称轴是________,在对称轴左侧部分是________的(填“上升”或“下降”).36.已知二次函数y =2x 2+bx ,当x >1时,y 随x 增大而增大,则b 的取值范围为______. 37.设点(﹣1,y 1),(2,y2),(3,y3)是抛物线y=﹣x 2+a 上的三点,则y 1、y2、y3的从小到大排列为__________. 三、解答题38.在同一直角坐标系中画出二次函数2113=+y x 与二次函数2113=--y x 的图形.(1)从抛物线的开口方向、形状、对称轴、顶点等方面说出两个函数图象的相同点与不同点;(2)说出两个函数图象的性质的相同点与不同点. 39.如图,已知抛物线24y x =-+.(1)该抛物线顶点坐标为________;(2)在坐标系中画出此抛物线y 的大致图像(不要求列表);(3)该抛物线24y x =-+可由抛物线2y x =-向________平移________个单位得到;(4)当0y >时,求x 的取值范围. 40.已知二次函数2y x 4x =-+.()1求函数图象的对称轴和顶点坐标;()2求这个函数图象与x 轴的交点坐标.参考答案:1.B【分析】按照二次函数y =ax 2+k 顶点坐标(0,k ),对称轴y 轴即可求解. 【详解】解:∵y =x 2﹣3,∵抛物线的顶点坐标为(0,﹣3),对称轴为y 轴; 故选:B .【点睛】本题考查了二次函数的图像和性质,以及顶点坐标和对称轴,掌握二次函数的图像和性质是解题的关键. 2.B【分析】分别把x=±1代入抛物线解析式,计算对应的函数值,然后进行判断. 【详解】解:∵当x=-1时,y=x 2-4=-3; 当x=1时,y=x 2-4=-3;∵点(-1,-3)在抛物线上,点(1,3)、(1,-5)、(-1,-5)都不在抛物线上. 故选:B .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足二次函数的解析式. 3.B【分析】根据二次函数的性质分析,即可得到答案. 【详解】抛物线y =-3x 2+4 ∵30-<∵抛物线y =-3x 2+4开口向下当0x =时,y =-3x 2+4取最大值,即y =4 ∵顶点坐标为()0,4 故选:B .【点睛】本题考查了二次函数的知识;解题的关键是熟练掌握二次函数的性质,从而完成求解. 4.D【分析】由抛物线的解析式可求得其开口方向、对称轴、函数的最值即可判断. 【详解】∵224y x =+,∵抛物线开口向上,对称轴为直线x =0,顶点为(0,4),当x =0时,有最小值4, 故A 、B 、C 正确,D 错误; 故选:D .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a (x−h )2+k 中,对称轴为x =h ,顶点坐标为(h ,k ). 5.A【分析】根据二次函数的图像和性质逐项分析即可.【详解】A.因为23y x =,22y x =-,221y x =-+这三个二次函数的图像对称轴为0x =,所以都关于y 轴对称,故选项A 正确,符合题意;B.抛物线23y x =,22y x =-的图象开口向上,抛物线221y x =-+的图象开口向下,故选项B 错误,不符合题意;C.抛物线22y x =-,221y x =-+的图象不经过原点,故选项C 错误,不符合题意;D.因为抛物线23y x =,22y x =-,221y x =-+的二次项系数不相等,故不能通过平移其它二次函数的图象,故D 选项错误,不符合题意; 故选A .【点睛】本题考查了二次函数的图像和性质,熟记二次函数的图像和性质是解题的关键. 6.A【分析】由抛物线的对称轴找到E 点的对称点,抛物线开口向下,y 1<y 2时结合图象求解; 【详解】解:∵抛物线y =﹣x 2+2x 的对称轴为x =1, E (3,y 2)关于对称轴对称的点(﹣1,y 2), ∵抛物线开口向下,∵y 1<y 2时,n >3或n <﹣1, 故选A .【点睛】本题考查二次函数图象的性质;找到E 点关于对称轴的对称点是解题的关键. 7.D【详解】解:∵y =x 2-2,∵抛物线开口向上,对称轴为y 轴,∵当x <0时,y 随x 的增大而减小,故选D .【点睛】本题主要考查二次函数的性质,掌握y =ax 2+c 的图象的开口方向、对称轴及增减性是解题的关键.8.B【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断【详解】解:A 、y x 1=-+,一次函数,k <0,故y 随着x 增大而减小,错误;B 、2y x 1=-(x >0),故当图像在对称轴右侧,y 随着x 的增大而增大,正确;C 、1y x=,k =1>0,分别在一、三象限里,每个象限内y 随x 的增大而减小,错误; D 、2y x 1=-+(x >0),故当图像在对称轴右侧,y 随着x 的增大而减小,错误. 故选:B .【点睛】本题考查一次函数,二次函数及反比例函数的增减性,掌握函数图像性质利用数形结合思想是解答本题的关键.9.D【分析】求出二次函数的对称轴,再根据二次函数的对称性和增减性判断即可.【详解】解:∵()22211y x x x =-+=--+,∵抛物线对称轴为直线1x =,∵10a =-<,∵1x <时,y 随x 的增大而增大,∵()222.5,P y 的对称点为()20.5,y -,且50.51-<-<,∵123y y y =>.故选:D .【点睛】本题考查的是二次函数图像上点的坐标特征、二次函数的性质等知识点的理解和掌握,熟练运用二次函数的性质进行推理是解决本题的关键.10.B【分析】由点A (-5,m ),B (5,m )的坐标特点,于是排除选项A 、B ;再根据A (-5,m ),C (-2,m +n 2+1)的特点和二次函数的性质,可知抛物线的开口向下,即a <0,可得结果.【详解】解:∵A (-5,m ),B (5,m ),∵点A 与点B 关于y 轴对称;由于y =x +2不关于y 轴对称,2y x=-的图象关于原点对称,因此选项A 、D 错误; ∵n 2>0,∵m +n 2+1>m ;由A (-5,m ),C (-2,m +n 2+1)可知,在对称轴的左侧,y 随x 的增大而增大, 对于二次函数只有a <0时,满足条件,∵B 选项正确,故选:B .【点睛】本题考查了反比例函数、一次函数、二次函数的图象和性质,可以采用排除法,直接法得出答案.11.D【分析】根据二次函数的对称轴进行判断即可.【详解】二次函数2y ax k =+的对称轴为0x =观察四个选项可知,只有选项D 的图象符合故选:D .【点睛】本题考查了二次函数的图象与性质(对称性),掌握二次函数的图象与性质是解题关键.12.C【分析】根据所给解析式判断出正确函数图象,注意自变量的取值范围.【详解】A 选项错误,两个函数图象都不符合自变量的取值范围;B 选项错误,反比例函数的图象不符合自变量的取值范围;C 选项正确;D 选项错误,当=1x -时,图象不应该是一条直线.故选:C .【点睛】本题考查二次函数和反比例函数的图象,解题的关键是掌握二次函数和反比例函数的图象.13.C【分析】根据函数解析式,二次项系数交点判别式小于0,所以排除A 、B 、D ,故选C .【详解】解:A选项,由函数解析式,2-=-<0,所以函数图像与x轴无交点,A=48b ac错误;B选项,由函数解析式,2-=-<0,所以函数图像与x轴无交点,B错误;=48b acC选项,由函数解析式,2=48-=-<0,所以函数图像与x轴无交点,C正确;b acD选项,由函数解析式,2-=-<0,所以函数图像与x轴无交点,D错误.=48b ac【点睛】本题考考察的是二次函数图像的基本性质,根据解析式,判断开口方向及交点个数,判断图像的形状.14.C【分析】根据二次函数的图像与性质即可求解.【详解】二次函数y=-x2-1的图象开口向下,且顶点坐标为(0,-1),故选项C符合题意.【点睛】此题主要考查二次函数的图像判断,解题的关键是熟知二次函数的图像与性质.15.D【分析】根据二次函数的图象的性质,开口方向,顶点坐标,对称轴即可判断.【详解】由题意可知:a=-1,所以开口向下,顶点坐标为(0,-2),故答案选D.【点睛】本题主要考查了二次函数的解析式来判断该函数的图象,解本题的要点在于熟知二次函数图象的基本性质.16.C【分析】根据二次函数的性质及二次函数图象“左加右减,上加下减”的平移规律逐一判断即可得答案.【详解】∵2>0,∵抛物线y=2x2﹣3的开口向上,故A选项错误,∵y=2x2﹣3是二次函数的顶点式,∵对称轴是y轴,故B选项错误,∵-3<0,抛物线开口向上,∵抛物线与x轴有两个交点,故C选项正确,抛物线y=2x2﹣3向左平移两个单位长度可得抛物线y=2(x+2)2﹣3,故D选项错误,故选:C.【点睛】此题考查二次函数的性质及二次函数图象的平移,熟练掌握二次函数的性质及“左加右减,上加下减”的平移规律是解题关键.17.D【分析】根据二次函数22y x =-的图象和性质,逐一判断选项,即可.【详解】∵a=1>0,∵抛物线开口向上,故A 错误,∵当0x =时,函数的最小值是2-,∵B 错误,∵抛物线的对称轴是y 轴,∵C 错误,∵∆=224041(2)80b ac -=-⨯⨯-=>,∵抛物线与x 轴有两个交点,∵D 正确,故选D.【点睛】本题主要考查二次函数的图象和性质,掌握二次函数的系数的几何意义,是解题的关键.18.C【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:∵二次函数y =﹣2x 2+1,∵该函数图象开口向下,故选项A 错误;顶点坐标为(0,1),故选项B 错误;当x <0时,y 随x 的增大而增大,故选项C 正确;当x =0时,y 有最大值1,故选项D 错误;故选:C .【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.19.D【分析】根据二次函数的性质对A 、C 进行判断;根据二次函数图象上点的坐标特征对B 进行判断;利用方程2x 2-1=0解的情况对D 进行判断.【详解】A. a =2,则抛物线y =2x 2−1的开口向上,所以A 选项错误;B. 当x =1时,y =2×1−1=1,则抛物线不经过点(1,-1),所以B 选项错误;C. 抛物线的对称轴为直线x =0,所以C 选项错误;D. 当y =0时,2x 2−1=0,此方程有两个不相等的实数解,所以D 选项正确.故选D.【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质,二次函数图象上点的坐标特征,结合图像是解题的关键.20.B【分析】根据二次函数的图像与性质逐项进行判断即可.【详解】因为20a =-<,所以二次函数图像开口向下,故A 选项错误;因为抛物线开口向下,对称轴为y 轴,所以当x <0时,y 随x 的增大而增大,故B 选项正确;二次函数221y x =-+的顶点为(0,1),故C 选项错误;因为二次函数开口向下,对称轴为y 轴,所以当x =0时,y 有最大值1,故D 选项错误. 故选B.【点睛】本题考查二次函数的图像与性质,熟练掌握图像与性质是解题的关键.21.A【详解】两图象与y 轴的交点相同,故排除了B 、D,若a>0,选A,C 中两个函数中的a 符号相反.22.B【分析】分a>0与a<0两种情况分类讨论即可确定正确的选项.【详解】解:当a>o 时,函数a y x=的图象位于一、三象限,20()y ax a a =--≠的开口向下,交y 轴的负半轴,选项B 符合;当a<o 时,函数a y x=的图象位于二、四象限,20()y ax a a =--≠的开口向上,交y 轴的正半轴,没有符合的选项.故答案为:B.【点睛】本题考查的知识点是反比例函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键.23.C【分析】根据题意,把问题转化为二次函数问题.【详解】根据题意,min{x 2+1,1-x 2}表示x 2+1与1-x 2中的最小数,不论x 取何值,都有x 2+1≥1-x 2,所以y=1-x 2;可知,当x=0时,y=1;当y=0时,x=±1;则函数图象与x 轴的交点坐标为(1,0),(-1,0);与y 轴的交点坐标为(0,1). 故选C .【点睛】本题考查了二次函数的性质,熟练掌握二次函数图像的性质是解决此题的关键.24.C【详解】解:二次函数y =x 2+1中,a =1>0,图象开口向上,顶点坐标为(0,1),符合条件的图象是C.故选C.25.B【分析】利用二次函数的开口方向和顶点坐标,结合图象找出答案即可.【详解】解:二次函数y =x 2+1中,a =1>0,图象开口向上,顶点坐标为(0,1),符合条件的图象是B .故选B .【点睛】此题考查二次函数的图象,掌握二次函数的性质,图象的开口方向和顶点坐标是解决问题的关键.26.A【分析】本题由一次函数y ax b =+图象得到字母系数的正负,再与二次函数2y ax b =+的图象相比较看是否一致.【详解】解:A 、由抛物线可知,a 0<,b 0<,由直线可知,a 0<,b 0<,故本选项正确; B 、由抛物线可知,a 0<,b 0>,由直线可知,a 0>,b 0>,故本选项错误; C 、由抛物线可知,a 0>,b 0<,由直线可知,a 0>,b 0>,故本选项错误; D 、由抛物线可知,a 0>,b 0>,由直线可知,a 0<,b 0>,故本选项错误. 故选A .【点睛】本题考查了一次函数和二次函数的图象.解答该题时,一定要熟记一次函数、二次函数的图象的性质.27.D【详解】解:由图象,根据二次函数的性质,有A .若12y y =,则12x x =±,原说法错误;B .若12x x =-,则12y y =,原说法错误;C .若120x x <<,则12y y <,原说法错误;D .若120x x <<,则12y y >,原说法正确.故选D .【点睛】本题考查二次函数的图象和性质.28. 下 y 轴 (0,-3)【解析】略29. 描点 向上 y 轴 ()0,1 向上 y 轴 ()0,1-【分析】根据画二次函数的图像采用描点法,然后根据二次函数性质得出开口方向,对称轴,顶点坐标即可.【详解】解:通过描点法画出221y x =+和221y x =-的图像,通过图像可知:221y x =+的开口方向向上,对称轴为y 轴,顶点坐标为(0,1),221y x =-的开口方向向上,对称轴y 轴,顶点坐标(0,1)-,故答案为:描点;向上;y 轴;()0,1;向上;y 轴;()0,1-.【点睛】本题考查了画函数图像的方法,二次函数的基本性质,根据题意画出相应的图像是解本题的关键.30.23y x =-【分析】根据开口方向与抛物线2y x =-的方向相反,形状相同可得1a =,再利用顶点坐标即可写出解析式.【详解】∵抛物线与2y x =-的方向相反,形状相同,且顶点坐标(0,-3)∵设抛物线解析式为:2y x k =+,代入顶点坐标(0,-3)得:3k =-∵解析式为23y x =-故答案为23y x =-.【点睛】本题考查求抛物线解析式,熟记抛物线顶点式是解题的关键.31. 向上 向下 |k |【解析】略32.23(2)32y x =++ 【分析】根据二次函数的图象与性质即可得. 【详解】抛物线的顶点为(2,3)-∴可设此抛物线的解析式为2(2)3y a x =++ 又此抛物线的形状,开口方向与23312y x x =-+相同 32a ∴= 则此抛物线的解析式为23(2)32y x =++ 故答案为:23(2)32y x =++. 【点睛】本题考查了二次函数的图象与性质,熟记二次函数的图象与性质是解题关键. 33.12y y <.【分析】先判断抛物线的开口方向和对称轴,再根据二次函数的性质解答即可.【详解】∵二次函数2y x c =-+的开口向下,对称轴为y 轴,∵当0x <时,y 随x 的增大而增大,∵21-<-,∵12y y <,故答案为:12y y <.【点睛】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性,熟练掌握抛物线的性质是解题的关键.34.4.【分析】根据所给二次函数的解析式结合“自变量的取值范围”进行分析解答即可.【详解】∵在24y x =-+中:23x -≤≤,∵其图象开口向下,顶点坐标为(0,4),∵其最大值为4.故答案为:4.【点睛】熟记“二次函数2(0)y ax k a =+≠的图象的顶点坐标为(0)k ,”是解答本题的关键.35. 1- y 轴 上升【分析】根据二次函数的指数是2列出方程求出m 的值,再根据抛物线开口方向向下可得10+<m ,然后求解即可.【详解】解:由题意得,222m m +=且10+<m , 解得113m ,213m 且1m <-,∵1m =-对称轴是y 轴, ∵113130m∵在对称轴左侧部分是上升;故答案是:1-y 轴,上升.【点睛】本题考查了二次函数的性质,二次函数的定义,熟记性质和概念是解题的关键.36.b ≥﹣4【分析】先表示出二次函数的对称轴,再根据二次函数的增减性列出不等式求解即可.【详解】解:二次函数y =2x 2+bx 对称轴为直线x =﹣22⨯b =﹣4b , ∵a =2>0,x >1时,y 随x 增大而增大,∵﹣4b ≤1, 解得b ≥﹣4.故答案为:b ≥﹣4.【点睛】本题主要考查了二次函数图像的性质与二次函数的对称轴,解题的关键在于能够熟练掌握二次函数的增减性.37.y1>y2>y3【分析】由题意可得对称轴为y 轴,则(-1,y 1)关于y 轴的对称点为(1,y 1),根据二次函数的增减性可得函数值的大小关系.【详解】∵抛物线y=-x 2+a ,∵对称轴为y 轴,∵(-1,y 1)关于对称轴y 轴对称点为(1,y 1),∵a=-1<0,∵当x >0时,y 随x 的增大而减小,∵1<2<3,∵y 1>y 2>y 3,故答案为y 1>y 2>y 3.【点睛】本题考查了二次函数图象上的点的坐标特征,二次函数的增减性,利用增减性比较函数值的大小是本题的关键.38.(1)见解析;(2)见解析.【分析】(1)根据二次函数的图象解答即可;(2)从开口大小和增减性两个方面作答即可.【详解】(1)解:如图:,2113=+y x 与2113=--y x 图象的相同点是:形状都是抛物线,对称轴都是y 轴, 2113=+y x 与2113=--y x 图象的不同点是:2113=+y x 开口向上,顶点坐标是(0,1),2113=--y x 开口向下,顶点坐标是(0,﹣1); (2)解:两个函数图象的性质的相同点:开口程度相同,即开口大小一样;不同点:2113=+y x ,当x <0时,y 随x 的增大而减小,当x >0时,y 随x 的增大而增大;2113=--y x ,当x <0时,y 随x 的增大而增大,当x >0时,y 随x 的增大而减小. 【点睛】本题考查了二次函数的图象与性质,属于基础题型,熟练掌握抛物线的图象与性质是解答的关键.39.解:(1)(0,4);(2)见解析;(3)上,4;(4)22x -<<..【分析】(1)求出对称轴得到抛物线的顶点坐标;(2)先确定抛物线与y 轴的交点为(0,4),与x 轴交点为(-2,0)和(2,0),然后利用描点法画函数图像;(3)根据二次函数的平移规律“上加下减,左加右减”即可求解;(4)结合函数图像,写出函数图像上x 轴上方所对应的自变量的范围即可.【详解】(1)抛物线的对称轴为:x =-2b a=0 令x =0,y =4则顶点坐标为(0,4);(2)由(1)得,抛物线与y 轴的交点为(0,4),令y =0,x =±2,则抛物线与x 轴交点为(-2,0)和(2,0),画图得:(3)由上加下减的原则可得,y =-x 2向上平移4个单位可得出y =-x 2+4;(4)根据图像得,当y >0时,x 的取值范围为:-2<x <2.【点睛】本题考查抛物线与坐标轴的交点、二次函数的性质和抛物线的平移等知识,解题的关键是熟练掌握二次函数的性质.40.(1)对称轴为直线x=2,顶点坐标为(2,4)(2)图象与x轴的交点坐标是(0,0)和(4,0).【详解】试题分析:(1)可根据配方法的解题步骤,将一般式转化为顶点式,根据顶点式可确定对称轴及顶点坐标;(2)令y=0,解一元二次方程可求抛物线与x轴两交点的坐标.试题解析:(1)y=-(x2-4x)=-(x-2)2+4,对称轴为直线x=2,顶点坐标为(2,4)(2)当y=0时,-x2+4x=0,解得x=0或4,∵图象与x轴的交点坐标是(0,0)和(4,0).考点:1.二次函数的三种形式;2.二次函数的性质;3.抛物线与x轴的交点.。
二次函数图象性质与应用一、单选题1.(2023·甘肃兰州·统考中考真题)已知二次函数,下列说法正确的是()A.对称轴为B.顶点坐标为C.函数的最大值是-3D.函数的最小值是-3 2.(2023·广西·统考中考真题)将抛物线向右平移3个单位,再向上平移4个单位,得到的抛物线是()A.B.C.D.3.(2023·湖南·统考中考真题)如图所示,直线l为二次函数的图像的对称轴,则下列说法正确的是()A.b恒大于0B.a,b同号C.a,b异号D.以上说法都不对4.(2023·辽宁大连·统考中考真题)已知抛物线,则当时,函数的最大值为()A.B.C.0D.25.(2023·四川成都·统考中考真题)如图,二次函数的图象与x轴交于,两点,下列说法正确的是()A.抛物线的对称轴为直线B.抛物线的顶点坐标为C.,两点之间的距离为D.当时,的值随值的增大而增大6.(2023·河南·统考中考真题)二次函数的图象如图所示,则一次函数的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.(2023·内蒙古通辽·统考中考真题)如图,抛物线与x轴交于点,其中,下列四个结论:①;②;③;④不等式的解集为.其中正确结论的个数是()A.1B.2C.3D.48.(2023·四川自贡·统考中考真题)经过两点的抛物线(为自变量)与轴有交点,则线段长为()A.10B.12C.13D.159.(2023·四川达州·统考中考真题)如图,拋物线(为常数)关于直线对称.下列五个结论:①;②;③;④;⑤.其中正确的有()A.4个B.3个C.2个D.1个10.(2023·四川泸州·统考中考真题)已知二次函数(其中是自变量),当时对应的函数值均为正数,则的取值范围为( )A.B.或C.或D.或11.(2023·四川凉山·统考中考真题)已知抛物线的部分图象如图所示,则下列结论中正确的是()A.B.C.D.(为实数)12.(2023·四川南充·统考中考真题)抛物线与x轴的一个交点为,若,则实数的取值范围是()A.B.或C.D.或13.(2023·安徽·统考中考真题)已知反比例函数在第一象限内的图象与一次函数的图象如图所示,则函数的图象可能为()A.B.C.D.14.(2023·四川广安·统考中考真题)如图所示,二次函数为常数,的图象与轴交于点.有下列结论:①;②若点和均在抛物线上,则;③;④.其中正确的有( )A.1个B.2个C.3个D.4个15.(2023·四川遂宁·统考中考真题)抛物线的图象如图所示,对称轴为直线.下列说法:①;②;③(t为全体实数);④若图象上存在点和点,当时,满足,则m的取值范围为.其中正确的个数有()A.1个B.2个C.3个D.4个16.(2023·四川眉山·统考中考真题)如图,二次函数的图象与x轴的一个交点坐标为,对称轴为直线,下列四个结论:①;②;③;④当时,;其中正确结论的个数为()A.1个B.2个C.3个D.4个17.(2023·浙江宁波·统考中考真题)已知二次函数,下列说法正确的是() A.点在该函数的图象上B.当且时,C.该函数的图象与x轴一定有交点D.当时,该函数图象的对称轴一定在直线的左侧18.(2023·新疆·统考中考真题)如图,在平面直角坐标系中,直线与抛物线相交于点,.结合图象,判断下列结论:①当时,;②是方程的一个解;③若,是抛物线上的两点,则;④对于抛物线,,当时,的取值范围是.其中正确结论的个数是()A.4个B.3个C.2个D.1个19.(2023·山东东营·统考中考真题)如图,抛物线与x轴交于点A,B,与y轴交于点C,对称轴为直线,若点A的坐标为,则下列结论正确的是()A.B.C.是关于x的一元二次方程的一个根D.点,在抛物线上,当时20.(2023·四川乐山·统考中考真题)如图,抛物线经过点,且,有下列结论:①;②;③;④若点在抛物线上,则.其中,正确的结论有()A.4个B.3个C.2个D.1个21.(2023·湖南岳阳·统考中考真题)若一个点的坐标满足,我们将这样的点定义为“倍值点”.若关于的二次函数(为常数,)总有两个不同的倍值点,则的取值范围是()A.B.C.D.22.(2023·山东烟台·统考中考真题)如图,抛物线的顶点的坐标为,与轴的一个交点位于0合和1之间,则以下结论:①;②;③若图象经过点,则;④若关于的一元二次方程无实数根,则.其中正确结论的个数是()A.1B.2C.3D.423.(2023·湖南·统考中考真题)已知,若关于x的方程的解为.关于x的方程的解为.则下列结论正确的是()A.B.C.D.24.(2023·湖北随州·统考中考真题)如图,已知开口向下的抛物线与x轴交于点,对称轴为直线.则下列结论正确的有()①;②;③方程的两个根为;④抛物线上有两点和,若且,则.A.1个B.2个C.3个D.4个25.(2023·浙江杭州·统考中考真题)设二次函数是实数,则()A.当时,函数的最小值为B.当时,函数的最小值为C.当时,函数的最小值为D.当时,函数的最小值为26.(2023·湖南·统考中考真题)已知是抛物线(a是常数,上的点,现有以下四个结论:①该抛物线的对称轴是直线;②点在抛物线上;③若,则;④若,则其中,正确结论的个数为()A.1个B.2个C.3个D.4个27.(2023·山东聊城·统考中考真题)已知二次函数的部分图象如图所示,图象经过点,其对称轴为直线.下列结论:①;②若点,均在二次函数图象上,则;③关于x的一元二次方程有两个相等的实数根;④满足的x的取值范围为.其中正确结论的个数为().A.1个B.2个C.3个D.4个28.(2023·山东·统考中考真题)若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:等都是三倍点”,在的范围内,若二次函数的图象上至少存在一个“三倍点”,则c的取值范围是()A.B.C.D.29.(2023·广东·统考中考真题)如图,抛物线经过正方形的三个顶点A,B,C,点B在轴上,则的值为()A.B.C.D.30.(2023·湖北·统考中考真题)拋物线与轴相交于点.下列结论:①;②;③;④若点在抛物线上,且,则.其中正确的结论有()A.1个B.2个C.3个D.4个31.(2023·黑龙江齐齐哈尔·统考中考真题)如图,二次函数图像的一部分与x轴的一个交点坐标为,对称轴为直线,结合图像给出下列结论:①;②;③;④关于x的一元二次方程有两个不相等的实数根;⑤若点,均在该二次函数图像上,则.其中正确结论的个数是()A.4B.3C.2D.132.(2023·湖北鄂州·统考中考真题)如图,已知抛物线的对称轴是直线,且过点,顶点在第一象限,其部分图象如图所示,给出以下结论:①;②;③;④若,(其中)是抛物线上的两点,且,则,其中正确的选项是( )A.①②③B.①③④C.②③④D.①②④33.(2023·山东枣庄·统考中考真题)二次函数的图象如图所示,对称轴是直线,下列结论:①;②方程()必有一个根大于2且小于3;③若是抛物线上的两点,那么;④;⑤对于任意实数m,都有,其中正确结论的个数是( )A.5B.4C.3D.234.(2023·湖北十堰·统考中考真题)已知点在直线上,点在抛物线上,若且,则的取值范围是()A.B.C.D.35.(2023·湖北黄冈·统考中考真题)已知二次函数的图象与x轴的一个交点坐标为,对称轴为直线,下列论中:①;②若点均在该二次函数图象上,则;③若m为任意实数,则;④方程的两实数根为,且,则.正确结论的序号为()A.①②③B.①③④C.②③④D.①④36.(2023·四川·统考中考真题)已知抛物线(,,是常数且)过和两点,且,下列四个结论:;;若抛物线过点,则;关于的方程有实数根,则其中正确的结论有( )A.1个B.2个C.3个D.4个二、多选题37.(2023·湖南·统考中考真题)如图,抛物线与x轴交于点,则下列结论中正确的是()A.B.C.D.三、填空题38.(2023·内蒙古·统考中考真题)已知二次函数,若点在该函数的图象上,且,则的值为________.39.(2023·山东滨州·统考中考真题)要修一个圆形喷水池,在池中心竖直安装一根水管,水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为处达到最高,高度为,水柱落地处离池中心,水管长度应为____________.40.(2023·湖南郴州·统考中考真题)抛物线与轴只有一个交点,则________.41.(2023·上海·统考中考真题)一个二次函数的顶点在y轴正半轴上,且其对称轴左侧的部分是上升的,那么这个二次函数的解析式可以是________.42.(2023·吉林长春·统考中考真题)年5月8日,商业首航完成——中国民商业运营国产大飞机正式起步.时分航班抵达北京首都机场,穿过隆重的“水门礼”(寓意“接风洗尘”、是国际民航中高级别的礼仪).如图①,在一次“水门礼”的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的地物线的一部分.如图②,当两辆消防车喷水口A.B的水平距离为米时,两条水柱在物线的顶点H处相遇,此时相遇点H距地面米,喷水口A.B距地面均为4米.若两辆消防车同时后退米,两条水柱的形状及喷水口、到地面的距离均保持不变,则此时两条水柱相遇点距地面__________米.43.(2023·福建·统考中考真题)已知抛物线经过两点,若分别位于抛物线对称轴的两侧,且,则的取值范围是___________.44.(2023·内蒙古赤峰·统考中考真题)如图,抛物线与x轴交于点A,B,与y轴交于点C,点在抛物线上,点E在直线上,若,则点E的坐标是____________.45.(2023·湖北武汉·统考中考真题)抛物线(是常数,)经过三点,且.下列四个结论:①;②;③当时,若点在该抛物线上,则;④若关于的一元二次方程有两个相等的实数根,则.其中正确的是________(填写序号).46.(2023·四川宜宾·统考中考真题)如图,抛物线经过点,顶点为,且抛物线与轴的交点B在和之间(不含端点),则下列结论:①当时,;②当的面积为时,;③当为直角三角形时,在内存在唯一点P,使得的值最小,最小值的平方为.其中正确的结论是___________.(填写所有正确结论的序号)四、解答题47.(2023·浙江宁波·统考中考真题)如图,已知二次函数图象经过点和.(1)求该二次函数的表达式及图象的顶点坐标.(2)当时,请根据图象直接写出x的取值范围.48.(2023·浙江温州·统考中考真题)一次足球训练中,小明从球门正前方的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为时,球达到最高点,此时球离地面.已知球门高为2.44m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素).(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.25m处?对于出发点的飞行水平距离(单位:)以、飞行高度(单位:)随飞行时间(单位:)变化的飞行时间飞行水平距离飞行高度探究发现:与,与之间的数量关系可以用我们已学过的函数来描述.直接写出关于的函数解析式和关于的函数解析式(不要求写出自变量的取值范围)问题解决:如图,活动小组在水平安全线上处设置一个高度可以变化的发射平台试飞该航模飞机.根据(1)若发射平台相对于安全线的高度为0m,求飞机落到安全线时飞行的水平距离;(2)在安全线上设置回收区域.若飞机落到内(不包括端点)射平台相对于安全线的高度的变化范围.50.(2023·河北·统考中考真题)嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m长.嘉嘉在点处将沙包(看成点)抛出,并运动路线为抛物线的一部分,淇淇恰在点处接住,然后跳起将沙包回传,其运动路线为抛物线的一部分.(1)写出的最高点坐标,并求a,c的值;(2)若嘉嘉在x轴上方的高度上,且到点A水平距离不超过的范围内可以接到沙包,求符合条件的n 的整数值.51.(2023·河南·统考中考真题)小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网与y轴的水平距离,,击球点P 在y轴上.若选择扣球,羽毛球的飞行高度与水平距离近似满足一次函数关系;若选择吊球,羽毛球的飞行高度与水平距离近似满足二次函数关系.(1)求点P的坐标和a的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.面示意图,一位运动员从球台边缘正上方以击球高度为的高度,将乒乓球向正前方击打到对面乒乓球到球台的竖直高度记为(单位:),乒乓球运行的水平距离记为(单位:)水平距离x/竖直高度y/在平面直角坐标系中,描出表格中各组数值所对应的点,(2)①当乒乓球到达最高点时,与球台之间的距离是__________,当乒乓球落在对面球台上时,的水平距离是__________;②求满足条件的抛物线解析式;(3)技术分析:如果只上下调整击球高度,乒乓球的运行轨迹形状不变,那么为了确保乒乓球既能过网,又能落在对面球台上,需要计算出的取值范围,以利于有针对性的训练.如图②.乒乓球台长为,球网高为15.25.现在已经计算出乒乓球恰好过网的击球离度的值约为1.27.请你计算处时,击球高度的值(乒乓球大小忽略不计):“,”似地刻画水面高度h与流水时间任务2利用时,;时,这两组数据求水面高度【反思优化】经检验,发现有两组表中观察值不满足任务减少偏差.通过查阅资料后知道:应h的观察值之差的平方和,记为任务3(1)计算任务2得到的函数解析式的)请确定经过的一次函数解析式,使得【设计刻度】得到优化的函数解析式后,综合实践小组决定在甲容器外壁设计刻度,通过刻度直接读取时间.任务4请你简要写出时间刻度的设计方案.54.(2023·黑龙江·统考中考真题)如图,抛物线与轴交于两点,交轴于点.(1)求抛物线的解析式.(2)拋物线上是否存在一点,使得,若存在,请直接写出点的坐标;若不存在,请说明理由.55.(2023·广东深圳·统考中考真题)蔬菜大棚是一种具有出色的保温性能的框架覆膜结构,它出现使得人们可以吃到反季节蔬菜.一般蔬菜大棚使用竹结构或者钢结构的骨架,上面覆上一层或多层保温塑料膜,这样就形成了一个温室空间.如图,某个温室大棚的横截面可以看作矩形和抛物线构成,其中,,取中点O,过点O作线段的垂直平分线交抛物线于点E,若以O点为原点,所在直线为x轴,为y轴建立如图所示平面直角坐标系.请回答下列问题:(1)如图,抛物线的顶点,求抛物线的解析式;(2)如图,为了保证蔬菜大棚的通风性,该大棚要安装两个正方形孔的排气装置,,若,求两个正方形装置的间距的长;(3)如图,在某一时刻,太阳光线透过A点恰好照射到C点,此时大棚截面的阴影为,求的长.参考答案一、单选题1.【答案】C【分析】根据二次函数的图象及性质进行判断即可.【详解】二次函数的对称轴为,顶点坐标为∵∴二次函数图象开口向下,函数有最大值,为∴A.B.D选项错误,C选项正确故选:C.【点拨】本题考查二次函数的图象及性质,熟练掌握二次函数图象和性质是解题的关键.2.【答案】A【分析】根据“左加右减,上加下减”的法则进行解答即可.【详解】解:将抛物线向右平移3个单位,再向上平移4个单位,得到的抛物线的函数表达式为:.故选:A.【点拨】本题考查了二次函数图象的平移,熟知二次函数图象平移的法则是解答此题的关键.3.【答案】C【分析】先写出抛物线的对称轴方程,再列不等式,再分,两种情况讨论即可.【详解】解:∵直线l为二次函数的图像的对称轴,∴对称轴为直线,当时,则,当时,则,∴a,b异号,故选:C.【点拨】本题考查的是二次函数的性质,熟练的利用对称轴在y轴的右侧列不等式是解本题的关键.4.【答案】D【分析】把抛物线化为顶点式,得到对称轴为,当时,函数的最小值为,再分别求出和时的函数值,即可得到答案.【详解】解:∵,∴对称轴为,当时,函数的最小值为,当时,,当时,,∴当时,函数的最大值为2,故选:D.【点拨】此题考查了二次函数的最值,熟练掌握二次函数的性质是解题的关键.5.【答案】C【分析】待定系数法求得二次函数解析式,进而逐项分析判断即可求解.【详解】解:∵二次函数的图象与x轴交于,两点,∴∴∴二次函数解析式为,对称轴为直线,顶点坐标为,故A,B 选项不正确,不符合题意;∵,抛物线开口向上,当时,的值随值的增大而减小,故D选项不正确,不符合题意;当时,即∴,∴,故C选项正确,符合题意;故选:C.【点拨】本题考查了二次函数的性质,待定系数法求二次函数解析式,抛物线与坐标轴的交点,熟练掌握二次函数的性质是解题的关键.6.【答案】D【分析】根据二次函数图象的开口方向、对称轴判断出、的正负情况,再由一次函数的性质解答.【详解】解:由图象开口向下可知,由对称轴,得.∴一次函数的图象经过第一、二、三象限,不经过第四象限.故选:D.【点拨】本题考查二次函数图象和一次函数图象的性质,解答本题的关键是求出、的正负情况,要掌握它们的性质才能灵活解题,此题难度不大.7.【答案】C【分析】根据函数图象可得出a,b,c的符号即可判断①,当时,即可判断②;根据对称轴为,可判断③;,数形结合即可判断④.【详解】解:∵抛物线开口向上,对称轴在y轴右边,与y轴交于正半轴,∴,∴,故①正确.∵当时,,∴,故②错误.∵抛物线与x轴交于两点,其中,∴,∴,当时,,当时,,,,∴,∴,故③正确;设,,如图:由图得,时,,故④正确.综上,正确的有①③④,共3个,故选:C.【点拨】本题考查了二次函数的图象及性质,根据二次函数的图象及性质巧妙借助数学结合思想解决问题是解题的关键.8.【答案】B【分析】根据题意,求得对称轴,进而得出,求得抛物线解析式,根据抛物线与轴有交点得出,进而得出,则,求得的横坐标,即可求解.【详解】解:∵抛物线的对称轴为直线∵抛物线经过两点∴,即,∴,∵抛物线与轴有交点,∴,即,即,即,∴,,∴,∴,故选:B.【点拨】本题考查了二次函数的对称性,与轴交点问题,熟练掌握二次函数的性质是解题的关键.9.【答案】B【分析】由抛物线的开口方向、与y轴交点以及对称轴的位置可判断A.B.c的符号,由此可判断①正确;由抛物线的对称轴为,得到,即可判断②;可知时和时的y值相等可判断③正确;由图知时二次函数有最小值,可判断④错误;由抛物线的对称轴为可得,因此,根据图像可判断⑤正确.【详解】①∵抛物线的开口向上,∵抛物线与y轴交点在y轴的负半轴上,由得,,,故①正确;②抛物线的对称轴为,,,,故②正确;③由抛物线的对称轴为,可知时和时的y值相等.由图知时,,∴时,.即.故③错误;④由图知时二次函数有最小值,,,,故④错误;⑤由抛物线的对称轴为可得,,∴,当时,.由图知时故⑤正确.综上所述:正确的是①②⑤,有3个,故选:B.【点拨】本题主要考查了二次函数的图像与系数的关系,二次函数的对称轴及顶点位置.熟练掌握二次函数图像的性质及数形结合是解题的关键.10.【答案】D【分析】首先根据题意求出对称轴,然后分两种情况:和,分别根据二次函数的性质求解即可.【详解】∵二次函数,∴对称轴,当时,∵当时对应的函数值均为正数,∴此时抛物线与x轴没有交点,∴,∴解得;当时,∵当时对应的函数值均为正数,∴当时,,∴解得,∴,∴综上所述,当时对应的函数值均为正数,则的取值范围为或.故选:D.【点拨】此题考查了二次函数的图象和性质,解题的关键是分两种情况讨论.11.【答案】C【分析】根据开口方向,与y轴交于负半轴和对称轴为直线可得,,由此即可判断A;根据对称性可得当时,,当时,,由此即可判断B.C;根据抛物线开口向上,对称轴为直线,可得抛物线的最小值为,由此即可判断D.【详解】解:∵抛物线开口向上,与y轴交于负半轴,∴,∵抛物线对称轴为直线,∴,∴,∴,故A中结论错误,不符合题意;∵当时,,抛物线对称轴为直线,∴当时,,∴,故B中结论错误,不符合题意;∵当时,,抛物线对称轴为直线,∴当时,,∴,又∵,∴,故C中结论正确,符合题意;∵抛物线对称轴为直线,且抛物线开口向上,∴抛物线的最小值为,∴,∴,故D中结论错误,不符合题意;故选C.【点拨】本题主要考查了二次函数图象与系数的关系,二次函数图象的性质等等,熟练掌握二次函数的相关知识是解题的关键.12.【答案】B【分析】根据抛物线有交点,则有实数根,得出或,分类讨论,分别求得当和时的范围,即可求解.【详解】解:∵抛物线与x轴有交点,∴有实数根,∴即解得:或,当时,如图所示,依题意,当时,,解得:,当时,,解得,即,当时,当时,,解得:∴综上所述,或,故选:B.【点拨】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键.13.【答案】A【分析】设,则,,将点,代入,得出,代入二次函数,可得当时,,则,得出对称轴为直线,抛物线对称轴在轴的右侧,且过定点,进而即可求解.【详解】解:如图所示,设,则,根据图象可得,将点代入,∴,∴,∵,∴,∴,对称轴为直线,当时,,∴抛物线经过点,∴抛物线对称轴在的右侧,且过定点,当时,,故选:A.【点拨】本题考查了一次函数与反比例函数交点问题,二次函数图象的性质,得出是解题的关键.14.【答案】C【分析】根据二次函数图像的性质、二次函数图像与系数的关系以及与轴交点问题逐项分析判断即可.【详解】解:由图可知,二次函数开口方向向下,与轴正半轴交于一点,,.,..故①正确.是关于二次函数对称轴对称,.在对称轴的左边,在对称轴的右边,如图所示,.故②正确.图象与轴交于点,,...故③正确.,.当时,,.,,.故④不正确.综上所述,正确的有①②③.故选:C.【点拨】本题考查了二次函数图像与系数之间的关系,解题的关键在于通过图像判断对称轴,开口方向以及与轴交点.15.【答案】C【分析】开口方向,对称轴,与y轴的交点位置判断①,特殊点判断②,最值判断③,对称性判断④即可.【详解】∵抛物线的开口向下,对称轴为直线,抛物线与y轴交点位于负半轴,∴,∴,故①正确;由图象可知,,根据对称轴,得,∴∴,故②正确;∵抛物线的开口向下,对称轴为直线,∴抛物线的最大值为,当时,其函数值为,∴,∴,∵,∴,∴,故③错误;如图所示,和点满足,∴和点关于对称轴对称,∴,∵,∴,解得,故④正确;故选:C.【点拨】本题考查了二次函数的图象和性质,熟练掌握二次函数的性质,是解题的关键.16.【答案】D【分析】根据二次函数开口向上,与y轴交于y轴负半轴,,根据对称轴为直线可得,由此即可判断①;求出二次函数与x轴的另一个交点坐标为,进而得到当时,,由此即可判断②;根据时,,即可判断③;利用图象法即可判断④.【详解】解:∵二次函数开口向上,与y轴交于y轴负半轴,∴,∵二次函数的对称轴为直线,∴,∴,∴,故①正确;∵二次函数的图象与x轴的一个交点坐标为,∴二次函数的图象与x轴的另一个交点坐标为,∴当时,,∴,故②正确;∵时,,∴,∴,即,故③正确;由函数图象可知,当时,,故④正确;综上所述,其中正确的结论有①②③④共4个,故选:D.【点拨】本题主要考查了二次函数图象与系数的关系,二次函数与不等式的关系,二次函数的性质等等,熟知二次函数的相关知识是解题的关键.17.【答案】C【分析】根据二次函数的图象和性质,逐一进行判断即可.【详解】解:∵,当时:,∵,∴,即:点不在该函数的图象上,故A选项错误;当时,,∴抛物线的开口向上,对称轴为,∴抛物线上的点离对称轴越远,函数值越大,∵,,∴当时,有最大值为,当时,有最小值为,∴,故B选项错误;∵,∴该函数的图象与x轴一定有交点,故选项C正确;当时,抛物线的对称轴为:,∴该函数图象的对称轴一定在直线的右侧,故选项D错误;故选:C.【点拨】本题考查二次函数的图象和性质.熟练掌握二次函数的性质,是解题的关键.18.【答案】B【分析】根据函数图象直接判断①②,根据题意求得解析式,进而得出抛物线与轴的交点坐标,结合图形即可判断③,化为顶点式,求得顶点坐标,进而即可判断④,即可求解.【详解】解:根据函数图象,可得当时,,故①正确;∵在上,∴是方程的一个解;故②正确;∵,在抛物线上,∴解得:∴当时,解得:∴当时,,。
二次函数的图像与性质 解答题(基础+重点,三大模块)目录:模块一、二次函数y=ax 2、y=ax 2+k 图像与性质模块二、二次函数y=a (x-h )2、y=a (x-h )2+k 图像与性质模块三、二次函数y=ax 2+bx+c 图像与性质模块一、二次函数y=ax 2、y=ax 2+k 图像与性质1.在如图所示的同一直角坐标系中,画出函数24y x =,214y x =,24y x =-与214y x =-的图象并回答下列问题:x…1-01…24y x =……214y x =……24y x =-……214y x =-……(1)抛物线24y x =的开口方向_____,对称轴是_____,顶点坐标是_____.抛物线24y x =-的开口方向______,对称轴是______,顶点坐标是______;(2)抛物线24y x =与抛物线24y x =-的图象关于______轴对称;(3)抛物线214y x =,当x ______0时,抛物线上的点都在x 轴上方;当x ______0时,抛物线从左向右逐渐上升;它的顶点是最_______点.抛物线214y x =-,当x _______0时,抛物线从左向右逐渐下降,它的顶点是最_______点.2.已知抛物线2y ax =经过点()2,8A --.(1)说出这个二次函数图象的开口方向和图象的位置;(2)判断点()1,4B --是否在此抛物线上.3.根据下列条件求a 的取值范围:(1)函数y =(a -2)x 2,当x >0时,y 随x 的增大而减小,当x <0时,y 随x 的增大而增大;(2)函数y =(3a -2)x 2有最大值;(3)抛物线y =(a +2)x 2与抛物线212y x =-的形状相同;(4)函数2a a y ax +=的图象是开口向上的抛物线.4.如图,已知一次函数y kx b =+的图象与二次函数2y ax =的图象交于点()1,A m 和()2,4B -.(1)求两个函数的解析式;(2)求AOB V 的面积.5.已知二次函数y =ax 2与y =﹣2x 2+c .(1)随着系数a 和c 的变化,分别说出这两个二次函数图象的变与不变;(2)若这两个函数图象的形状相同,则a = ;若抛物线y =ax 2沿y 轴向下平移2个单位就能与y =﹣2x 2+c的图象完全重合,则c = ;(3)二次函数y =﹣2x 2+c 中x 、y 的几组对应值如表:x﹣215y m n p表中m 、n 、p 的大小关系为 (用“<”连接).6.如图,直线12y x b =-+与抛物线2y ax =交于A ,B 两点,与y 轴于点C ,其中点A 的坐标为()4,8-.(1)求a ,b 的值;(2)若CD AB ^于点C ,CD CA =.试说明点D 在抛物线上.模块二、二次函数y=a (x-h )2、y=a (x-h )2+k 图像与性质7.指出下列抛物线的开口方向、对称轴和顶点坐标.抛物线开口方向对称轴顶点坐标y=―4(x+3)2+5()2=+-y x312y=(x―5)2―7y=―2(x―2)2+68.已知抛物线()2=-++.y x2211(1)确定抛物线开口方向及对称轴;(2)当x为何值时,二次函数取得最大值或最小值,并求出这个最大值或最小值?9.在同一坐标系中画出下列函数的图象,观察抛物线,并指出它们的开口方向、对称轴和顶点坐标及对称轴两侧图象的增减性.x…4-3-2-1-01234…2=-……y x2=-+……y x(2)2=--……(1)y x(1)2=-;y x(2)2=-+;y x(2)(3)2=--.(1)y x10.已知抛物线y=a(x-h)2+k的图象如图所示,根据图象解答下列问题:(1)写出抛物线的解析式;(2)写出y随x的增大而增大的自变量x的取值范围;(3)当自变量x取何值时,函数y有最大值?最大值为多少?11.如图,已知经过原点的抛物线y=2x2+mx与x轴交于另一点A(2,0).(1)求m的值和抛物线顶点M的坐标;(2)求直线AM的解析式.12.二次函数y=x2的图象如图所示,请将此图象向右平移1个单位,再向下平移4个单位.(1)请直接写出经过两次平移后的函数解析式;(2)请求出经过两次平移后的图象与x 轴的交点坐标,并指出当x 满足什么条件时,函数值小于0?(3)若A (x 1,y 1),B (x 2,y 2)是经过两次平移后所得的函数图象上的两点,且x 1<x 2<0,请比较y 1、y 2的大小关系.(直接写结果)13.在平面直角坐标系中,设二次函数()21212y x m m =--+-(m 是实数).(1)当2m =时,若点()6,A n 在该函数图象上,求n 的值.(2)若二次函数图象的顶点在某条______(A .直线 B .抛物线)上,且表达式为______;(3)已知点()1,P a c +,()47,Q m a c -+都在该二次函数图象上,求证:78c £-.模块三、二次函数y=ax 2+bx+c 图像与性质14.求出下列抛物线的开口方向,对称轴和顶点坐标.(1)2245y x x =-+(2)223y x x =-+-(3)232y x x=+(4)22y x x=--(5)2288y x x =-+-15.在平面直角坐标系xOy 中,二次函数225y x mx m =-+的图象经过点()1,2-.(1)求二次函数的表达式;(2)求二次函数图象的对称轴.16.如图,二次函数2y ax bx c =++的图象经A ,B ,C 三点.(1)观察图象,写出A,B,C三点的坐标,并求出此二次函数的解析式;(2)求出此抛物线的顶点坐标和对称轴;(3)x为何值时,y随x的增大而增大?x为何值时,y随x的增大而减小?17.二次函数2=++x与变量y的部分对应值如下表:y ax bx cx…3-2-1-015…y…705-8-9-7…(1)求此二次函数的解析式;(2)写出抛物线顶点坐标和对称轴.18.已知抛物线C:243y x x=-+.(1)直接写出该抛物线关于x轴对称的抛物线C1的解析式.(2)将抛物线C 平移至2C ,使其经过点()25,,且顶点在y 轴上,求2C 的解析式.19.已知抛物线22231y x mx m m =-+-++(m 为常数).(1)当抛物线的顶点在第二象限时,求m 的取值范围.(2)当21x -££时,y 先随x 的增大而增大,后随x 的增大而减小,且当1x =时y 有最小值,求整数m 的值.20.已知二次函数2y x bx c =-++的图象过点()3,0A ,()1,0C -.(1)求此二次函数的解析式;(2)如图,二次函数的图象与y 轴交于点B ,二次函数图象的对称轴与直线AB 交于点P ,求P 点的坐标.21.如图,在平面直角坐标系中,二次函数2y x bx c =++的图像与x 轴交于A ,B 两点,B 点的坐标为()3,0,与y 轴交于点C (0,―3),点D 为抛物线的顶点(1)求这个二次函数的解析式;(2)求ABD △的面积22.如图,在平面直角坐标系中,直线13y kx =+与x 轴、y 轴分别交于A ,B 两点.抛物线221342y x x =-+经过点A 且交线段AB 于点C .(1)求k 的值.(2)求点C 的坐标.(3)直接写出当x 在何范围时,12y y >.23.在平面直角坐标系xOy 中,直线128y x =+与抛物线22y x =的相交于点A 和点B (点A 的横坐标小于点B 的横坐标)(1)求交点A 和点B 的坐标;(2)求当13x -££时,2y 的最大值;(3)直接写出228x x +>的解集.24.已知抛物线21y ax bx =+-(a ,b 为常数,0a ¹)经过()2,3,()1,0两个点.(1)求抛物线的解析式;(2)抛物线的顶点为______;(3)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线______.25.如图,抛物线24y ax bx =+-与x 轴交于点()2,0A -和()4,0B ,与y 轴交于点C .(1)求抛物线的解析式;(2)点D 为抛物线上一动点,直线AD 交y 轴于点E ,直线BD 交y 轴于点F ,求CE CF 的值.26.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线2112y x bx =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且线段OA OB =.(注:抛物线2y ax bx c =++的对称轴为2b x a =-)(1)求该抛物线的解析式;(2)在抛物线的对称轴上找一点M ,使AM CM -的值最大,求点M 的坐标.27.已知y 关于x 的函数关系式中,自变量x 的取值范围为2a x a -££.(1)当函数为9y x =--时,y 的最大值为5,则a 的值为______,y 的最小值为______;(2)当函数为243y x x =-+时.①若y 的最大值为15,则a 的值为______;②若y 的最小值为15,则a 的值为;③若y 的最小值为1-,则a 的取值范围为______.28.如图,已知抛物线2y x bx c =-++与x 轴交于点()1,0A -和点()3,0B ,与y 轴交于点C ,连接BC 交抛物线的对称轴于点E ,D 是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C 和点D 的坐标;(3)若点P 在第一象限内的抛物线上,且4ABP COE S S =△△,求P 点坐标.。
2023~2024学年北京市九年级上期末数学分类——二次函数一.二次函数的性质(共16小题)1.(2023秋•东城区期末)关于二次函数y=2(x﹣1)2+2,下列说法正确的是()A.当x=1时,有最小值为2B.当x=1时,有最大值为2C.当x=﹣1时,有最小值为2D.当x=﹣1时,有最大值为22.(2023秋•丰台区期末)抛物线y=(x﹣1)2﹣2的顶点坐标是()A.(﹣1,﹣2)B.(1,﹣2)C.(﹣1,2)D.(1,2)3.(2024•海淀区)抛物线y=﹣(x﹣1)2+2的顶点坐标是()A.(1,﹣2)B.(1,2)C.(﹣1,﹣2)D.(﹣1,2)4.(2024•房山区)抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(1,2)C.(﹣1,﹣2)D.(1,﹣2)5.(2023秋•门头沟区期末)二次函数y=ax2+bx+c(a≠0)的图象是一条抛物线,自变量x与函数y的部分对应值如表:x…﹣2﹣10123…y…0﹣2﹣3﹣3﹣20…有如下结论:①抛物线的开口向上②抛物线的对称轴是直线③抛物线与y轴的交点坐标为(0,﹣3)④由抛物线可知ax2+bx+c<0的解集是﹣2<x<3其中正确的是()A.①②B.①②③C.①②④D.①②③④6.(2023秋•大兴区期末)抛物线y=(x﹣2)2+1的对称轴是()A.x=2B.x=﹣2C.x=1D.x=﹣17.(2023•西城区)下列关于函数y=x2﹣1的结论中,正确的是()A.y随x的增大而减小B.当x>0时,y随x的增大而增大C.当x<0时,y随x的增大而增大D.当x>0时,y随x的增大而减小8.(2023秋•通州区期末)下列关于二次函数y=3x2的说法正确的是()A.它的图象经过点(﹣1,﹣3)B.它的图象的对称轴是直线x=3C.当x<0时,y随x的增大而减小D.当x=0时,y有最大值为09.(2023秋•东城区期末)已知二次函数y=﹣x2+8x+3,当x>m时,y随x的增大而减小,则m的值可以是(写出一个即可).10.(2023秋•丰台区期末)已知二次函数y=x2+bx,当x>1时,y随x的增大而增大.写出一个满足题意的b的值为.11.(2023秋•朝阳区期末)抛物线y=x2﹣2x+4的顶点坐标是.12.(2023秋•朝阳区期末)已知函数y1=kx+4k﹣2(k是常数,k≠0),(a是常数,a≠0),在同一平面直角坐标系中,若无论k为何值,函数y1和y2的图象总有公共点,则a的取值范围是.13.(2023秋•门头沟区期末)二次函数y=2(x﹣1)2+3的顶点坐标为.14.(2023秋•大兴区期末)写出一个过点(0,1)且当自变量x>0时,函数值y随x的增大而增大的二次函数的解析式.15.(2024•平谷区)已知二次函数y=x2+2x﹣3.(1)求该抛物线的顶点坐标;(2)求该二次函数图象与x轴、y轴的交点坐标;(3)在平面直角坐标系xOy中,画出二次函数y=x2+2x﹣3的图象.16.(2024•房山区)已知二次函数y=x2+2x﹣3.(1)在平面直角坐标系中画出它的图象,并写出它的对称轴;(2)结合图象直接写出当﹣1<x<1时,y的取值范围.17.(2023秋•石景山区期末)在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)的顶点为P(﹣1,k),且经过点A(﹣3,0),其部分图象如图所示,下面四个结论中,①a<0;②b=﹣2a;③若点M(2,m)在此抛物线上,则m<0;④若点N(t,n)在此抛物线上且n<c,则t>0.所有正确结论的序号是.18.(2023秋•昌平区期末)已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)的对称轴是直线x=1,其部分图象如图,则以下四个结论中:①abc>0;②2a+b=0;③3a+c<0;④4a+b2>4ac,其中,正确结论的序号是.19.(2023秋•大兴区期末)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a<0)的图象经过点(0,1),(2,1).给出下面三个结论:①2a﹣b=0;②a+b+c>1;③关于x的一元二次方程ax2+bx+c ﹣m=0(m<1)有两个异号实数根.上述结论中,所有正确结论的序号是.20.(2024•平谷区)已知:二次函数y=ax2+bx+c(a≠0)的图象上部分对应点坐标如表,m的值为()x…﹣1﹣0.5 2.535…y…0﹣3.5﹣3.5m24…A.1B.2C.﹣5D.021.(2023秋•石景山区期末)在平面直角坐标系xOy中,若点(4,y1),(6,y2)在抛物线y=a(x﹣3)2+1(a>0)上,则下列结论正确的是()A.1<y1<y2B.1<y2<y1C.y2<y1<1D.y1<y2<1 22.(2023•西城区)若抛物线y=x2+3x+c经过点(0,2),则c的值为()A.2B.1C.0D.﹣223.(2024•海淀区)已知y是x的二次函数,表中列出了部分y与x的对应值:x012y01﹣1则该二次函数有(填“最小值”或“最大值”).24.(2023秋•大兴区期末)在平面直角坐标系xOy中,若点(2,y1),(4,y2)在抛物线y=2(x﹣3)2﹣4上,则y1y2(填“>”,“=”或“<”).25.(2023秋•密云区期末)若点A(﹣2,y1),B(﹣1,y2),C(3,y3)三点都在二次函数y=﹣3x2的图象上,则y1,y2,y3的大小关系是(按从小到大的顺序,用“<”连接).四.二次函数图象与几何变换(共13小题)26.(2024•平谷区)将抛物线y=向下平移1个单位长度,得到的抛物线是()A.B.C.D.27.(2023秋•朝阳区期末)把抛物线y=3x2向左平移2个单位长度,再向上平移5个单位长度,得到的抛物线的解析式为()A.y=3(x﹣5)2+2B.y=3(x+5)2+2C.y=3(x+2)2+5D.y=3(x﹣2)2+528.(2024•房山区)将二次函数y=x2的图象向上平移5个单位,得到的函数图象的表达式是()A.y=x2+5B.y=x2﹣5C.y=(x+5)2D.y=(x﹣5)229.(2023秋•门头沟区期末)如果将抛物线y=x2向上平移3个单位长度,向左平移1个单位长度,得到新的抛物线的表达式是()A.y=(x+1)2﹣3B.y=(x+1)2+3C.y=(x﹣1)2﹣3D.y=(x﹣1)2+330.(2023秋•石景山区期末)将抛物线y=3x2向左平移1个单位长度,平移后抛物线的解析式为()A.y=3(x+1)2B.y=3(x﹣1)2C.y=3x2+1D.y=3x2﹣131.(2023秋•昌平区期末)将抛物线y=2x2向左平移2个单位长度,再向下平移3个单位长度,所得到的抛物线的表达式为()A.y=2(x+2)2+3B.y=2(x﹣2)2+3C.y=2(x﹣2)2﹣3D.y=2(x+2)2﹣332.(2023秋•大兴区期末)在平面直角坐标系xOy中,将抛物线y=3x2先向右平移4个单位长度,再向上平移1个单位长度,得到的抛物线是()A.y=3(x+4)2﹣1B.y=3(x+4)2+1C.y=3(x﹣4)2﹣1D.y=3(x﹣4)2+133.(2023秋•通州区期末)在平面直角坐标系中,将抛物线y=2x2先向左平移3个单位长度,再向下平移4个单位长度后所得到的抛物线的表达式为()A.y=2(x﹣3)2+4B.y=2(x﹣3)2﹣4C.y=2(x+3)2+4D.y=2(x+3)2﹣434.(2024•顺义区)若将抛物线y=2x2向右平移2个单位长度,则所得抛物线的表达式为.35.(2023秋•东城区期末)将抛物线y=2x2向下平移3个单位长度,得到新的抛物线的解析式是.36.(2024•海淀区)在平面直角坐标系xOy中,将抛物线y=3x2向下平移1个单位,得到的抛物线表达式为.37.(2023秋•密云区期末)将抛物线y=x2先向下平移1个单位长度,再向右平移2个单位长度后,得到的新抛物线解析式为.38.(2023•西城区)已知二次函数y=2x2﹣4x+5.(1)将y=2x2﹣4x+5化成y=a(x﹣h)2+k的形式;(2)抛物线y=2x2﹣4x+5可以由抛物线y=2x2经过平移得到,请写出一种平移方式.五.二次函数的最值(共1小题)39.(2023秋•密云区期末)二次函数y=3(x+1)2﹣4的最小值是()A.1B.﹣1C.4D.﹣4六.待定系数法求二次函数解析式(共7小题)40.(2024•顺义区)将二次函数y=﹣x2+2x+3化为y=a(x﹣h)2+k的形式,则所得表达式为()A.y=(x+1)2﹣4B.y=﹣(x﹣1)2+4C.y=﹣(x+1)2+2D.y=﹣(x﹣1)2+241.(2023秋•昌平区期末)写出一个开口向下且过(0,1)的抛物线的表达式.42.(2023•西城区)写出一个开口向上,且过原点的抛物线的表达式:.43.(2023秋•石景山区期末)已知二次函数y=﹣x2+bx+c的图象过点A(1,0)和B(0,﹣3).(1)求这个二次函数的解析式;(2)当1<x<4时,结合图象,直接写出函数值y的取值范围.44.(2023秋•昌平区期末)已知二次函数y=ax2+bx+c(a≠0)的y与x的部分对应值如表:x…﹣3﹣113…y…﹣3010…(1)求这个二次函数表达式;(2)在平面直角坐标系中画出这个函数图象;(3)当x的取值范围为时,y>﹣3.45.(2023秋•大兴区期末)已知抛物线y=x2+bx+c经过点(1,0),(0,﹣3).(1)求抛物线的解析式;(2)求该抛物线的顶点坐标.46.(2023秋•通州区期末)已知二次函数几组x与y的对应值如下表:x…﹣3﹣2﹣1134…y…1250﹣405…(1)写出此二次函数图象的对称轴;(2)求此二次函数的表达式.七.抛物线与x轴的交点(共9小题)47.(2024•海淀区)在平面直角坐标系xOy中,抛物线y=ax2+bx+c如图所示,则关于x的方程ax2+bx+c =0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.有实数根D.没有实数根48.(2023秋•石景山区期末)若抛物线y=x2+2mx+9与x轴只有一个交点,则m的值为()A.3B.﹣3C.D.±349.(2024•平谷区)若抛物线y=x2﹣2x+k﹣1与x轴有交点,则k的取值范围是.50.(2023秋•密云区期末)请写出一个常数a的值,使得二次函数y=x2+4x+a的图象与x轴没有交点,则a的值可以是.51.(2024•顺义区)已知二次函数y=ax2+bx﹣2的图象经过点A(﹣1,0),B(2,0).(1)求二次函数的表达式;(2)直接写出y>0时,x的取值范围.52.(2023秋•丰台区期末)已知二次函数y=ax2+bx+c(a≠0)图象上部分点的横坐标x,纵坐标y的对应值如下表所示:x…﹣10124…y…830﹣13…(1)求二次函数的解析式及顶点坐标;(2)直接写出当y>0时,x的取值范围.53.(2023秋•门头沟区期末)已知二次函数y=x2+2x﹣3.(1)求此二次函数图象的顶点坐标;(2)求此二次函数图象与x轴的交点坐标;(3)当y>0时,直接写出x的取值范围.54.(2023秋•石景山区期末)已知二次函数y=x2+2x﹣3.(1)将y=x2+2x﹣3化成y=a(x﹣h)2+k(a≠0)的形式,并写出其图象的顶点坐标;(2)求此函数图象与x轴交点的坐标;(3)在平面直角坐标系xOy中,画出此函数的图象.55.(2023•西城区)在平面直角坐标系xOy中,抛物线y=x2﹣2x+c与x轴的一个交点为A(﹣1,0).(1)c=;(2)画出函数y=x2﹣2x+c的图象;(3)当﹣2<x≤2时,结合函数图象直接写出y的取值范围.八.二次函数与不等式(组)(共4小题)56.(2023•西城区)如图,抛物线y=ax2+bx+c(a≠0)经过点(﹣1,0).下面有四个结论:①a>0;②2a+b<0;③4a+2b+c>0;④关于x的不等式ax2+(b﹣c)x>0的解集为﹣1<x<0.其中所有正确结论的序号是()A.①②B.②③C.③④D.②③④57.(2024•顺义区)已知二次函数y=ax2+bx+c的部分图象如图所示,写出一个满足不等式ax2+bx+c<﹣1的x的值,这个值可以是.58.(2023秋•东城区期末)在平面直角坐标系xOy中,二次函数y=x2+bx的图象过点A(3,3).(1)求该二次函数的解析式;(2)用描点法画出该二次函数的图象;(3)当0<x<3时,对于x的每一个值,都有kx>x2+bx,直接写出k的取值范围.59.(2023秋•朝阳区期末)已知一次函数y1=mx+n(m≠0)和二次函数,下表给出了y1,y2与自变量x的几组对应值:x…﹣2﹣101234…y1…543210﹣1…y2…﹣503430﹣5…(1)求y2的解析式;(2)直接写出关于x的不等式ax2+bx+c>mx+n的解集.。
二次函数的图像与性质【十大题型】【题型1 根据二次函数解析式判断其性质】 (3)【题型2 二次函数y=ax 2+bx+c 的图象和性质】 (4)【题型3 二次函数平移变换问题】 (5)【题型4 根据二次函数的对称性求字母的取值范围】 (6)【题型5 根据二次函数的性质求最值】 (6)【题型6 根据二次函数的最值求字母的取值范围】 (7)【题型7 根据二次函数自变量的情况求函数值的取值范围】 (7)【题型8 根据二次函数的增减性求字母的取值范围】 (8)【题型9 二次函数图象与各项系数符号】 (8)【题型10 二次函数与三角形相结合的应用方法】 (11)【知识点 二次函数的图像与性质】1.定义:一般的,形如y =ax 2+bx +c (a .b .c 是常数,a ≠0)的函数叫做二次函数。
其中x 是自变量,a .b .c 分别是函数解析式的二次项系数.一次项系数.常数项。
二次函数解析式的表示方法(1)一般式:y =ax 2+bx +c (其中a ,b ,c 是常数,a ≠0);(2)顶点式:y =a (x -h )2+k (a ≠0),它直接显示二次函数的顶点坐标是(h ,k );(3)交点式:y =a (x -x 1)(x -x 2)(a ≠0),其中x 1,x 2是图象与x 轴交点的横坐标 .注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -³时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.2.二次函数的图象是一条抛物线。
当a >0时,抛物线开口向上;当a <0时,抛物线开口向下。
|a |越大,抛物线的开口越小;|a |越小,抛物线的开口越大。
y =ax 2y =ax 2+k y =a (x -h )2y =a (x -h )2+k y =ax 2+bx +c 对称轴y 轴y 轴x =h x =h abx 2-=(0,0)(0,k )(h ,0)(h ,k )⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22顶点a >0时,顶点是最低点,此时y 有最小值;a <0时,顶点是最高点,此时y 有最大值。
二次函数y=ax 2的图像和性质(原卷)二次函数y=ax 2(a ≠0)的图象用描点法画出二次函数y=ax 2(a≠0)的图象,如图,它是一条关于y 轴对称的曲线,这样的曲线叫做抛物线.二次函数y=ax2(a ≠0)的图象的画法用描点法画二次函数y=ax 2(a≠0)的图象时,应在顶点的左、右两侧对称地选取自变量x 的值,然后计算出对应的y 值,这样的对应值选取越密集,描出的图象越准确.注意:用描点法画二次函数y=ax 2(a≠0)的图象,该图象是轴对称图形,对称轴是y 轴.画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.题型1:利用描点法作函数图像1.在直角坐标系中,画出函数y =2x 2的图象(取值、描点、连线、画图).【变式1-1】在如图所示的同一平面直角坐标系中,画出函数y =2x 2,y =x 2,y =﹣2x 2与y =﹣x 2的图x y象.xy=2x2y=x2y=﹣2x2y=﹣x2【变式1-2】画出下列函数的图象:(1)y=3x2;(2)y=﹣x2.a>0a<0题型2:二次函数y=ax2的图像2.在同一坐标系中画出y1=2x2,y2=﹣2x2,y3=x2的图象,正确的是()A.B.C.D.【变式2-1】下列图象中,是二次函数y=x2的图象的是()A.B.C.D.【变式2-2】如图,在同一平面直角坐标系中,作出函数①y=3x2;②y=;③y=x2的图象,则从里到外的三条抛物线对应的函数依次是()A.①②③B.①③②C.②③①D.③②①题型3:二次函数y=ax2的性质3.抛物线y=﹣3x2的顶点坐标为()A.(0,0)B.(0,﹣3)C.(﹣3,0)D.(﹣3,﹣3)【变式3-1】抛物线,y=x2,y=﹣x2的共同性质是:①都开口向上;②都以点(0,0)为顶点;③都以y轴为对称轴.其中正确的个数有()A.0个B.1个C.2个D.3个【变式3-2】.对于函数y=4x2,下列说法正确的是()A.当x>0时,y随x的增大而减小B.当x>0时,y随x的增大而增大C.y随x的增大而减小D.y随x的增大而增大【变式3-3】二次函数y=﹣3x2的图象一定经过()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限题型4:函数图像位置的识别4.已知a≠0,b<0,一次函数是y=ax+b,二次函数是y=ax2,则下面图中,可以成立的是()A.B.C.D.【变式4-1】函数y=ax2与y=ax+a,在第一象限内y随x的减小而减小,则它们在同一平面直角坐标系中的图象大致位置是()A.B.C.D.【变式4-2】在图中,函数y=﹣ax2与y=ax+b的图象可能是()A.B.C.D.题型5:函数值的大小比较5.二次函数y1=﹣3x2,y2=﹣x2,y3=5x2,它们的图象开口大小由小到大的顺序是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y1<y3题型6:简单综合-三角形面积6.求直线y=3x+4与抛物线y=x2的交点坐标,并求出两交点与原点所围成的三角形面积.(2)求函数y=ax2的解析式,并求其图象的顶点坐标和对称轴;(3)x取何值时,二次函数y=ax2中的y随x值的增大而增大?(4)求抛物线与过点(0,﹣2)且与x轴平行的直线的两个交点与顶点构成的三角形的面积.【变式6-2】已知抛物线y=ax2(a≠0)与直线y=﹣2x+3交于点(﹣1,b).求:(1)a,b的值;(2)抛物线与y=x+6的两交点及顶点所构成的三角形的面积.一、单选题1.抛物线y=-2x2的对称轴是()A.直线x= 12B.直线x=-12C.直线x=0D.直线y=02.已知A(1,y1)、B(﹣2,y2)、C(﹣√2,y3)在函数y=x2的图象上,则y1、y2、y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y2<y1<y3D.y2<y3<y13.抛物线y=x2的顶点坐标是()A.(0,0)B.(1,0)C.(0,1)D.(2,1)4.满足函数y=12x﹣1与y=﹣12x2的图象为()A.B.C.D.5.下列说法中错误的是()A.在函数y=-x2中,当x=0时y有最大值0B.在函数y=2x2中,当x>0时y随x的增大而增大C.抛物线y=2x2,y=-x2,y=−12x2中,抛物线y=2x2的开口最小,抛物线y=-x2的开口最大D.不论a是正数还是负数,抛物线y=ax2的顶点都是坐标原点6.已知抛物线y=(m−1)x2的开口向下,则m的取值范围是()A.m≥1B.m>1C.m<1D.m≤17.抛物线y= 14x2,y=4x2,y=-2x2的图像中,开口最大的是()A.y= 14x2B.y=4x2C.y=-2x2D.无法确定二、填空题8.若在抛物线y=mx m2−1对称轴的左侧,y随x的增大而增大,则m=.9.二次函数y=x2的图象开口方向是(填“向上”或“向下”).10.若抛物线y=(m−1)x m2−m开口向下,则m=.11.已知二次函数y=(m−2)x2的图象开口向下,则m的取值范围是.12.已知二次函数y甲=mx2和y乙=nx2,对任意给定一个x值都有y甲≥y乙,关于m,n的关系正确的是(填序号).①m<n<0 ②m>0,n<0 ③m<0,n>0 ④m>n>013.函数y=ax2(a≠0)与直线y=2x-3的图象交于点(1,b).求:(1)a和b的值;(2)求抛物线y=ax2的开口方向、对称轴、顶点坐标;(3)作y=ax2的草图.14.在同一个直角坐标系中作出y=12x2,y=12x2-1的图象.(1)分别指出它们的开口方向、对称轴以及顶点坐标;(2)抛物线y=12x2-1与抛物线y=12x2有什么关系?15.已知y=(k−1)x k2+k−4是二次函数,(1)若其图象开口向下,求k的值;(2)若当x<0时,y随x的增大而减小,求函数关系式.。
二次函数的图像和性质一、选择题(每题3分)1.下列四个函数中,一定是二次函数的是( )A .21y x x=+ B .y=ax 2+bx+c C .y=x 2﹣(x+7)2 D .y=(x+1)(2x ﹣1)【答案】D【解析】试题分析:因为形如y=ax 2+bx+c (0a ≠)的函数叫二次函数,所以选项A 、B 、C 错误,D 正确,故选:D .考点:二次函数的概念.2.若函数y=-2(x-1)2+(a-1)x 2为二次函数,则a 的取值范围为( ) A.a≠0 B.a≠1 C.a≠2 D.a≠3【答案】D .【解析】试题分析:根据二次函数的定义化成一般式为()2342y a x x =-+-, 则30a -≠3a ≠故选D .考点:二次函数的定义.3.下列函数中,不是二次函数的是( )A .y =1-x 2B .y =2(x -1)2+4C .y =(x -1)(x +4)D .y =(x -2)2-x 2【答案】D .【解析】试题分析:选项A ,y=1-x 2=-x 2+1,是二次函数,选项A 正确;选项B ,y=2(x-1)2+4=2x 2-4x+6,是二次函数,选项B 正确;选项C ,y=(x-1)(x+4)=x 2+x-2,是二次函数,选项C 正确;选项 D ,y=(x-2)2-x 2=-4x+4,是一次函数,选项D 错误.故答案选D .考点:二次函数的定义.二、填空题(每题3分)4.若函数y =(m -3)是二次函数,则m =______. 【答案】5.【解析】试题分析:已知函数y =(m -3)是二次函数,可得且m -3≠0,解得m=-5. 考点:二次函数的定义.5..一个圆柱的高等于底面半径,写出它的表面积S 与底面半径r 的函数关系式为_________.【答案】S=4π2r【解析】试题分析:根据题意可得h=2r ,则S=2πrh=4π2r .考点:二次函数的实际应用(时间:15分钟,满分25分)班级:___________姓名:___________得分:___________一、选择题(每题3分)1.下列函数中,不属于二次函数的是( )A .y=(x ﹣2)2B .y=﹣2(x+1)(x ﹣1)C .y=1﹣x ﹣x 2D .y=211x 【答案】D【解析】试题分析:整理一般形式后根据二次函数的定义判定即可:A 、整理为y=x 2﹣4x+4,是二次函数,不合题意;B 、整理为y=﹣2x 2+2,是二次函数,不合题意;C 、整理为y=﹣x 2﹣x+1,是二次函数,不合题意;D 、不是整式方程,符合题意.故选:D .考点:二次函数的定义2.下列函数中属于二次函数的是( )A .12-=x yB .12-=ax yC .222)1(2x x y --=D .)2)(1(π+-=x x y【答案】D .【解析】试题分析:A .12-=x y 是一次函数,故本选项错误;B .当0a =时,12-=ax y 不是二次函数,故本选项错误;C .222)1(2x x y --==42x -+是一次函数,故本选项错误;D )2)(1(π+-=x x y 是二次函数,故本选项正确.故选D .考点:二次函数的定义.3.若函数222(1)(1)y x a x =--+-为二次函数,则a 的取值范围为( )A .0a ≠B .1a ≠C .2a ≠D .3a ≠【答案】D .【解析】试题分析:由原函数解析式得到:222(1)(1)y x a x =--+-=2(3)42a x x -+-.∵函数 222(1)(1)y x a x =--+-为二次函数,∴30a -≠,解得3a ≠.故选D .考点:二次函数的定义.二、填空题(每题3分)4.在边长为16cm 的正方形铁皮上剪去一个圆,则剩下的铁皮的面积S (cm 2)与圆的半径r (cm )之间的函数表达式为 (不要求写自变量的取值范围).【答案】2256r S π-=【解析】试题分析:剩下的面积为:正方形的面积-圆的面积=162-πr 2=256-πr 2故答案为:2256r S π-=考点:函数的表达式.5..用长为8米的铝合金制成如图所示的窗框,若设窗框的宽为x 米,窗户的透光面积为S 平方米, 则S 关于x 的函数关系式 .【答案】S=x x 4232+-【解析】试题分析:设窗框的宽为x 米,则长为238x -米 ∴S=x x x x 4232382+-=⨯- 考点:实际问题抽象二次函数三、计算题(每题10分)6.已知,若函数2(1)3m y m x =-+是关于x 的一次函数.(1)求m 的值,并写出解析式;(2)若函数是关于x 的二次函数,求m 的值,.【答案】(1)1m =-;(2)m =.【解析】试题分析:(1)先根据一次函数的定义求出m 的值;(2)由22m =可得出m =试题解析:(1)∵函数2(1)3m y m x =-+是一次函数,∴21m =,解得1m =或1m =-,又∵10m -≠,∴1m ≠,∴1m =-,∴函数为:23y x =-+;m=可得出m=(2)由22考点:1.一次函数的定义;2.二次函数的定义.。
第九讲 二次函数的图象与性质命题点1 二次函数的基本性质类型一 开口方向、对称轴及顶点的确定(含解析式转化)1. (2022新疆)已知抛物线y =(x -2)2+1,下列结论错误..的是( ) A. 抛物线开口向上B. 抛物线的对称轴为直线x =2C. 抛物线的顶点坐标为(2,1)D. 当x <2时,y 随x 的增大而增大2. (2019甘肃省卷)将二次函数y =x 2-4x +5化成y =a (x -h )2+k 的形式为________.类型二 与增减性、最值有关的问题3. (2022宁波)点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上.若y 1<y 2,则m 的取值范围为( )A. m >2B. m >32C. m <1D. 32<m <24. (2022陕西)已知二次函数y =x 2-2x -3的自变量x 1,x 2,x 3对应的函数值分别为y 1,y 2,y 3.当-1<x 1<0,1<x 2<2,x 3>3时,y 1,y 2,y 3三者之间的大小关系是( ) A. y 1<y 2<y 3 B. y 2<y 1<y 3 C. y 3<y 1<y 2 D. y 2<y 3<y 15. (2022贺州)已知二次函数y =2x 2-4x -1在0≤x ≤a 时,y 取得的最大值为15,则a 的值为( ) A. 1 B. 2 C. 3 D. 46. (2022温州)已知点A (a ,2),B (b ,2),C (c ,7)都在抛物线y =(x -1)2-2上,点A 在点B 左侧,下列选项正确的是( )A. 若c <0,则a <c <bB. 若c <0,则a <b <cC. 若c >0,则a <c <bD. 若c >0,则a <b <c7. (2022南充)已知点M (x 1,y 1),N (x 2,y 2)在抛物线y =mx 2-2m 2x +n (m ≠0)上,当x 1+x 2>4且x 1<x 2时,都有y 1<y 2,则m 的取值范围为( ) A. 0<m ≤2 B. -2≤m <0 C. m >2 D. m <-2类型三 二次函数图象上点的坐标特征8. (2022岳阳)已知二次函数y =mx 2-4m 2x -3(m 为常数,m ≠0),点P (x P ,y P )是该函数图象上一点,当0≤x P ≤4时,y P ≤-3,则m 的取值范围是( ) A. m ≥1或m <0 B. m ≥1 C. m ≤-1或m >0 D. m ≤-19. (2021益阳)已知y 是x 的二次函数,下表给出了y 与x 的几对对应值: x … -2 -1 0 1 2 3 4 … y…11a323611…由此判断,表中a =________.10. (2022盐城)若点P (m ,n )在二次函数y =x 2+2x +2的图象上,且点P 到y 轴的距离小于2,则n 的取值范围是________.类型四 与坐标轴交点有关的问题11. (2022大庆)已知函数y =mx 2+3mx +m -1的图象与坐标轴恰有两个公共点,则实数m 的值为________. 12. (2022福建)已知抛物线y =x 2+2x -n 与x 轴交于A ,B 两点,抛物线y =x 2-2x -n 与x 轴交于C ,D 两点,其中n >0.若AD =2BC ,则n 的值为________.命题点2 与二次函数图象有关的判断13. (2022株洲)已知二次函数y =ax 2+bx -c (a ≠0),其中b >0,c >0,则该函数的图象可能为( )14. (2022黔东南州)若二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则一次函数y =ax +b 与反比例函数y =-cx在同一坐标系内的大致图象为( )15. (2021包头)已知二次函数y =ax 2-bx +c (a ≠0)的图象经过第一象限的点(1,-b ),则一次函数y =bx -ac的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限命题点3 二次函数图象与系数a ,b ,c 的关系[2022版课标新增知道二次函数系数与图象形状和对称轴的关系]16. (2022滨州)如图,抛物线y =ax 2+bx +c 与x 轴相交于点A (-2,0),B (6,0),与y 轴相交于点C ,小红同学得出了以下结论:①b 2-4ac >0;②4a +b =0;③当y >0时,-2<x <6;④a +b +c <0.其中正确的个数为( )第16题图A. 4B. 3C. 2D. 117. (2022毕节)在平面直角坐标系中,已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列5个结论:①abc >0;②2a -b =0;③9a +3b +c >0;④b 2>4ac ;⑤a +c <b .其中正确的有( )第17题图A. 1个B. 2个C. 3个D. 4个18. (2022日照)已知二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,对称轴为x =32 ,且经过点(-1,0).下列结论: ①3a +b =0;②若点(12 ,y 1),(3,y 2)是抛物线上的两点,则y 1<y 2;③10b -3c =0; ④若y ≤c ,则0≤x ≤3. 其中正确的有( )第18题图A. 1个B. 2个C. 3个D. 4个19. (2022遂宁)抛物线y=ax2+bx+c(a,b,c为常数)的部分图象如图所示,设m=a-b+c,则m的取值范围是________.第19题图命题点4二次函数解析式的确定20. (2021杭州)在“探索函数y=ax2+bx+c的系数a、b、c与图象的关系”活动中,老师给出了直角坐标系中的四个点:A(0,2),B(1,0),C(3,1),D(2,3),同学们探索了经过这四个点中的三个点的二次函数的图象,发现这些图象对应的函数表达式各不相同,其中a的值最大为()第20题图A. 52 B.32 C.56 D.1221. (2020兰州)点A(-4,3),B(0,k)在二次函数y=-(x+2)2+h的图象上,则k=________.22. (2020威海)下表中y与x的数据满足我们初中学过的某种函数关系.其函数表达式为________.x …-1013…y …0340…命题点5二次函数与一元二次方程的关系[2022版课标新增知道二次函数和一元二次方程之间的关系]23. (2022绍兴)已知抛物线y=x2+mx的对称轴为直线x=2,则关于x的方程x2+mx=5的根是()A. 0,4B. 1,5C. 1,-5D. -1,524. (2021铜仁)已知直线y=kx+2过一、二、三象限,则直线y=kx+2与抛物线y=x2-2x+3的交点个数为()A. 0个B. 1个C. 2个D. 1个或2个25. (2021泸州)直线l过点(0,4)且与y轴垂直,若二次函数y=(x-a)2+(x-2a)2+(x-3a)2-2a2+a(其中x 是自变量)的图象与直线l有两个不同的交点,且其对称轴在y轴右侧,则a的取值范围是()A. a>4B. a>0C. 0<a≤4D. 0<a<4命题点6二次函数图象与性质综合应用26. (2022天津)已知抛物线y=ax2+bx+c(a,b,c是常数,0<a<c)经过点(1,0),有下列结论:①2a+b<0;②当x>1时,y随x的增大而增大;③关于x的方程ax2+bx+(b+c)=0有两个不相等的实数根.其中,正确结论的个数是()A. 0B. 1C. 2D. 327. (新考法)·结合命题考查二次函数的图象与性质(2022杭州)已知二次函数y=x2+ax+b(a,b为常数).命题①:该函数的图象经过点(1,0);命题②:该函数的图象经过点(3,0);命题③:该函数的图象与x轴的交点位于y轴的两侧;命题④:该函数的图象的对称轴为直线x=1.如果这四个命题中只有一个命题是假命题,则这个假命题是()A. 命题①B. 命题②C. 命题③D. 命题④28. (2022自贡)已知A(-3,-2),B(1,-2),抛物线y=ax2+bx+c(a>0)顶点在线段AB上运动,形状保持不变,与x轴交于C,D两点(C在D的右侧),下列结论:①c≥-2;②当x>0时,一定有y随x的增大而增大;③若点D横坐标的最小值为-5,则点C横坐标的最大值为3;④当四边形ABCD 为平行四边形时,a =12 .其中正确的是( )A. ①③B. ②③C. ①④D. ①③④29. (2021安徽)已知抛物线y =ax 2-2x +1(a ≠0)的对称轴为直线x =1. (1)求a 的值;(2)若点M (x 1,y 1),N (x 2,y 2)都在此抛物线上,且-1<x 1<0,1<x 2<2,比较y 1与y 2的大小,并说明理由; (3)设直线y =m (m >0)与抛物线y =ax 2-2x +1交于点A ,B ,与抛物线y =3(x -1)2交于点C ,D ,求线段AB 与线段CD 的长度之比.30. (2022丽水)如图,已知点M (x 1,y 1),N (x 2,y 2)在二次函数y =a (x -2)2-1(a >0)的图象上,且x 2-x 1=3. (1)若二次函数的图象经过点(3,1). ①求这个二次函数的表达式; ②若y 1=y 2,求顶点到MN 的距离;(2)当x 1≤x ≤x 2时,二次函数的最大值与最小值的差为1,点M ,N 在对称轴的异侧,求a 的取值范围.第30题图31. (2022连云港)已知二次函数y =x 2+(m -2)x +m -4,其中m >2. (1)当该函数的图象经过原点O (0,0),求此时函数图象的顶点A 的坐标; (2)求证:二次函数y =x 2+(m -2)x +m -4的顶点在第三象限;(3)如图,在(1)的条件下,若平移该二次函数的图象,使其顶点在直线y =-x -2上运动,平移后所得函数的图象与y 轴的负半轴的交点为B ,求△AOB 面积的最大值.第31题图32. (2021遵义)如图,抛物线y =a (x -2)2+3(a 为常数且a ≠0)与y 轴交于点A (0,53 ).(1)求该抛物线的解析式;(2)若直线y =kx +23 (k ≠0)与抛物线有两个交点,交点的横坐标分别为x 1,x 2,当x 21 +x 22 =10时,求k 的值; (3)当-4<x ≤m 时,y 有最大值4m3,求m 的值.第32题图命题点7 二次函数图象的变化类型一 平移33. (2021铜仁)已知抛物线y =a (x -h )2+k 与x 轴有两个交点A (-1,0),B (3,0),抛物线y =a (x -h -m )2+k 与x 轴的一个交点是(4,0),则m 的值是( )A. 5B. -1C. 5或1D. -5或-134. (2022湖州)将抛物线y =x 2向上平移3个单位,所得抛物线的解析式是( ) A. y =x 2+3 B. y =x 2-3 C. y =(x +3)2 D. y =(x -3)235. (2021上海)将函数y =ax 2+bx +c (a ≠0)的图象向下平移两个单位,以下错误的是( ) A. 开口方向不变 B. 对称轴不变 C. y 随x 的变化情况不变 D. 与y 轴的交点不变36. (2021山西)抛物线的函数表达式为y =3(x -2)2+1, 若将x 轴向上平移2个单位长度,将y 轴向左平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为( ) A. y =3(x +1)2+3 B. y =3(x -5)2+3 C. y =3(x -5)2-1 D. y =3(x +1)2-137. (2022泸州)抛物线y =-12 x 2+x +1经平移后,不可能得到的抛物线是( )A. y =-12 x 2+xB. y =-12 x 2-4C. y =-12x 2+2021x -2022 D. y =-x 2+x +138. (2021苏州)已知抛物线y =x 2+kx -k 2的对称轴在y 轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点.则k 的值是( ) A. -5或2 B. -5 C. 2 D. -239. (2021黔东南州)如图,抛物线L 1:y =ax 2+bx +c (a ≠0)与x 轴只有一个公共点A (1,0),与y 轴交于点B (0,2),虚线为其对称轴,若将抛物线向下平移2个单位长度得抛物线L 2,则图中两个阴影部分的面积和为( )第39题图A. 1B. 2C. 3D. 440. (2022无锡)把二次函数y =x 2+4x +m 的图象向上平移1个单位长度,再向右平移3个单位长度,如果平移后所得抛物线与坐标轴有且只有一个公共点,那么m 应满足条件:________.41. (新考法)·结合胶片的平移考查二次函数的性质 (2022河北)如图,点P (a ,3)在抛物线C :y =4-(6-x )2上,且在C 的对称轴右侧.(1)写出C的对称轴和y的最大值,并求a的值;(2)坐标平面上放置一透明胶片,并在胶片上描画出点P及C的一段,分别记为P′,C′.平移该胶片,使C′所在抛物线对应的函数恰为y=-x2+6x-9,求点P′移动的最短路程.第41题图类型二轴对称(折叠)42. (2020陕西)在同一平面直角坐标系中,若抛物线y=mx2+2x-n与y=-6x2-2x+m-n关于x轴对称,则m,n的值为()A. m=-6,n=-3B. m=-6,n=3C. m=6,n=-3D. m=6,n=343. (2022玉林)小嘉说:将二次函数y=x2的图象平移或翻折后经过点(2,0)有4种方法:①向右平移2个单位长度;②向右平移1个单位长度,再向下平移1个单位长度;③向下平移4个单位长度;④沿x轴翻折,再向上平移4个单位长度.你认为小嘉说的方法中正确的个数有()A. 1个B. 2个C. 3个D. 4个44. (2021广元)将二次函数y=-x2+2x+3的图象在x轴上方的部分沿x轴翻折后,所得新函数的图象如图所示.当直线y=x+b与新函数的图象恰有3个公共点时,b的值为()第44题图A. -214 或-3B. -134 或-3C.214 或-3 D. 134或-3 类型三 中心对称或旋转45. (2021眉山)在平面直角坐标系中,抛物线y =x 2-4x +5与y 轴交于点C ,则该抛物线关于点C 成中心对称的抛物线的表达式为( ) A. y =-x 2-4x +5 B. y =x 2+4x +5 C. y =-x 2+4x -5 D. y =-x 2-4x -546. (2022黔东南州)在平面直角坐标系中,将抛物线y =x 2+2x -1先绕原点旋转180°,再向下平移5个单位,所得到的抛物线的顶点坐标是________.。