练习44瞬态动力学时间函数加载
- 格式:ppt
- 大小:401.00 KB
- 文档页数:11
1.什么是坐标耦联,正则坐标,广义坐标,物理坐标?坐标耦联:由于坐标的选择,使得必须由联立的方程组才能求解,这就称为坐标耦联;它取决于表示运动坐标的选择方法,与体系本身的特性无关。
正则坐标:既无动力耦联,又无静力耦联的坐标,叫正则坐标。
广义坐标:能决定质点系的几何位置的彼此独立的量,称为该体系广义坐标;广义坐标可以取长度量纲的量,也可以用角度甚至面积和体积来表示。
物理坐标:即几何坐标,直接建立在体系中坐标系。
2.集中质量法:是结构分析中最常用的处理方法,把连续分布的质量集中到质点,采用真实的物理量,具有直接直观的优点。
广义坐标法:广义坐标是形函数的幅值,有时没有明确的物理意义,但是比较方便快捷。
有限元法:综合了集中质量法与广义坐标法的特点(1)与广义坐标法相似,有限元法采用了形函数的概念,但不同于广义坐标法在全部体系结构上插值,而是采用分片插值,因此形函数表达式形状可相对简单;(2)与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接直观的优点。
3.动力问题与静力问题的重要区别?结构动力特性一般指什么?(1)动力反应要计算全部时间上的一系列解,而静力问题是某一时间点上的解,主要原因是动力问题荷载是随时间变化的,但此外因并不足以产生重大不同,那样可将动力问题看成一系列静力问题;(2)考虑惯性力的影响是结构动力学和静力学的一个本质的重要区别。
结构的动力特性:自振频率、振型、阻尼4.动荷载的分类及其特点?根据荷载是否已预先确定,动荷载可以分为两类:确定性(非随机)荷载和非确定性(随机)荷载。
确定性荷载是荷载随时间的变化规律已预先确定,是完全已知的时间过程;非确定性荷载是荷载随时间变化的规律预先不可以确定,是一种随机过程。
5.什么叫静力凝聚?为简化计算,忽略惯性效应不大的方向上的动力效应,而使质量、刚度矩阵保证正定、对称,这种减少体系自由度的方法称为静力凝聚法。
6.动力自由度与静力自由度的概念及二者区别?动力自由度是指动力分析中,为确定体系任一时刻全部质量的几何位置所需要的独立参数的数目;静力自由度是使结构体系静定所需要的独立约束数目。
第章瞬态动力学分析瞬态动力学分析(也称时间历程分析)是用于确定承受任意的随时间变化载荷的结构的动力学响应的一种方法。
本章将通过实例讲述瞬态动力学分析的基本步骤和具体方法。
瞬态动力学概论弹簧阻尼系统的自由振动分析任务驱动&项目案例A NSYS 17.0中文版有限元分析从入门到精通Note10.1 瞬态动力学概论可以用瞬态动力学分析确定结构在静载荷、瞬态载荷和简谐载荷的随意组合作用下随时间变化的位移、应变、应力及力。
载荷和时间的相关性使得惯性力和阻尼作用比较显著。
如果惯性力和阻尼作用不重要,就可以用静力学分析代替瞬态分析。
瞬态动力学分析比静力学分析更复杂,因为按“工程”时间计算,瞬态动力学分析通常要占用更多的计算机资源和人力。
可以先做一些预备工作以理解问题的物理意义,从而节省大量资源,例如,可以做以下预备工作。
首先分析一个比较简单的模型,由梁、质量体、弹簧组成的模型可以以最小的代价对问题提供有效、深入的理解,简单模型或许正是确定结构所有的动力学响应所需要的。
如果分析中包含非线性,可以首先通过进行静力学分析尝试了解非线性特性如何影响结构的响应。
有时在动力学分析中没必要包括非线性。
了解问题的动力学特性。
通过做模态分析计算结构的固有频率和振型,便可了解当这些模态被激活时结构如何响应。
固有频率同样也对计算出正确的积分时间步长有用。
对于非线性问题,应考虑将模型的线性部分子结构化以降低分析代价。
子结构在帮助文件中的ANSYS Advanced Analysis Techniques Guide里有详细的描述。
进行瞬态动力学分析可以采用3种方法,即Full Method(完全法)、Mode Superposition Method (模态叠加法)和Reduced Method(减缩法)。
下面来比较一下各种方法的优缺点。
10.1.1 Full Method(完全法)Full Method采用完整的系统矩阵计算瞬态响应(没有矩阵减缩)。
第16章瞬态动力学分析第1节基本知识瞬态动力学分析,亦称时间历程分析,是确定随时间变化载荷作用下结构响应的技术。
它的输入数据是作为时间函数的载荷,可以是静载荷、瞬态载荷和简谐载荷的随意组合作用。
输出数据是随时间变化的位移及其它导出量,如:应力、应变、力等。
用于瞬态动力分析的运动方程为:[]{}[]{}[]{}(){}t F&&M=u+&+CKuu其中:式中[M]为质量矩阵;[C]为阻尼矩阵;[K]为刚度矩阵。
所以在瞬态动力分析中密度或质点质量、弹性模量及泊松比、阻尼等因素均应考虑,在ANSYS分析过程中密度或质量、弹性模量是必须输入的,忽略阻尼时可以选忽略选项。
瞬态动力学分析可以应用于承受各种冲击载荷的结构,如:炮塔、汽车车门等,应用于承受各种随时间变化载荷的结构,如:混凝土泵车臂架、起重机吊臂、桥梁等,应用于承受撞击和颠簸的办公设备,如:移动电话、笔记本电脑等,同时ANSYS在瞬态动力学分析中可以使用线性和非线性单元(仅在完全瞬态动力学中使用)。
材料性质可以是线性或非线性、各向同性或正交各项异性、温度恒定的或温度相关的。
分析结果写入jobname.RST文件中。
可以用POST1和POST26观察分析结果。
ANSYS在进行瞬态动力学分析中可以采用三种方法,即Full(完全)法、Reduced(缩减)法和Mode Superposition(模态叠加)法。
ANSYS提供了各种分析类型和分析选项,使用不同方法ANSYS软件会自动配置相应选择项目,常用的分析类型和分析选项如表16-1所示。
在瞬态分析中,时间总是计算的跟踪参数,在整个时间历程中,同样载荷也是时间的函数,有两种变化方式:Ramped :如图16-1(a )所示,载荷按照线性渐变方式变化。
Stepped :如图16-1(b )所示,载荷按照解体突变方式变化。
图16-1 载荷增加方式 渐变与突变依据载荷变化方式可以将整个时间历程划分成多个载荷步(LoadStep ),每个载荷步代表载荷发生一次突变或一次渐变阶段。
有限元分析丨瞬态动力学分析瞬态动力学分析(Transient Structural)是结构有限元分析中非常重要的模块,下文是学习过程的一些积累,仅供参考学习使用,如有错误请指正!目录9.1 瞬态动力学分析简介瞬态动力学分析(Transient Structural)是用于分析载荷随时间变化的结构的动力学响应的方法。
用于确定结构在受到稳态载荷、瞬态载荷和简谐载荷的随意组合下随时间变化的位移、应变和应力。
惯性力和阻尼在瞬态动力学中非常重要,如果惯性力和阻尼可以忽略,则可以用静力学分析代替瞬态动力学分析。
瞬态动态分析比静态分析更复杂,计算消耗和时间消耗较大。
通过做一些初步的工作来理解问题的物理性质,可以节省大量的资源。
9.2 瞬态动力学分析应用承受各种冲击载荷的结构,如:汽车中的门、导弹发射阶段等;承受各种随时间变化载荷的结构,如:桥梁、地面移动装置等;承受撞击和颠簸设备,如:机器设备运输过程。
9.3 瞬态动力学行业标准GB/T 2423.35-1995 电工电子产品环境试验第2部分:试验方法试验Ea和导则:冲击GJB 150-18 军用设备环境试验方法:冲击试验表9.1 脉冲加速度和持续时间(1)半正弦波半正弦形脉冲适用于模拟线性系统的撞击或线性系统的减速所引起的冲击效应,例如弹性结构的撞击。
图半正弦脉冲例:峰值加速度为15G,脉冲持续时间为11ms,Z方向冲击为例图 workbench中输入半正弦波输入载荷类型为加速度(Acceleration)条件,其中Define By选择Components,在Z Component处选择函数(Function),在等号后输入:Asin(ωt),ω=2π/Ta=14700*sin(2π*time/0.022)=14700*sin(2*180*time/0.022)=14700*sin((16363.636*time)^2)^0.5)mm/s2。
注意:单位为角度制,由于此处函数符号不支持绝对值运算符(abs)。
瞬态现象的时间特性与动力学分析瞬态现象是一种在自然界中普遍存在的现象,它可以在许多领域中观察到,如物理学、化学、生物学等。
瞬态现象通常指的是一种短暂的变化或事件,在时间上存在一定的特性与规律。
在本文中,我们将探讨瞬态现象的时间特性以及与动力学之间的关系。
首先,我们来了解一下瞬态现象的时间特性。
瞬态现象往往发生得非常迅速,持续时间很短。
它们的发生可以是由外界刺激引起的,也可以是由系统内部的变化所导致的。
无论是哪种原因引起的,瞬态现象往往都具有一个明确的起点和终点。
正是因为这种短暂且具有明确时限的特性,瞬态现象才显得尤为有趣和重要。
接下来,我们来分析瞬态现象与动力学之间的关系。
动力学是研究物体运动及其与力的关系的分支学科,它研究的是物体随时间的变化。
而瞬态现象正是动力学中的一种重要现象。
在动力学的理论框架下,我们可以通过描述瞬态现象的动力学方程来理解其时间特性。
动力学方程可以描述系统在某一时刻的运动状态以及其随时间的变化规律。
通过分析瞬态现象的动力学方程,我们可以获得关于瞬态现象的更深入的理解。
此外,瞬态现象的时间特性对于我们理解自然界的一些重要现象具有重要意义。
例如,在化学反应中,一些反应的速率非常快,导致瞬态现象的出现。
瞬态现象的短暂性使得我们能够观察到一些在平衡状态下无法观察到的现象。
通过研究瞬态反应过程中的时间特性,我们可以揭示出反应机理和反应过程中的关键因素,对于化学反应的控制和优化具有重要的意义。
此外,在物理学领域,许多实验现象也表现出瞬态性。
例如,光的传播和干涉现象,声波的传播和共振现象等。
瞬态现象使得我们能够研究和理解这些现象的特性和规律。
通过对瞬态现象的时间特性的深入研究,我们可以更好地理解自然界中的各种物理现象。
总结起来,瞬态现象的时间特性与动力学之间存在紧密的联系。
瞬态现象的存在让我们能够观察到一些平衡状态下无法察觉到的现象,通过对瞬态现象的时间特性和动力学方程的分析,我们可以深入探究这些现象背后的机制和规律。
瞬态动力学和稳态动力学
瞬态动力学指的是系统在开始阶段或者在外部条件发生改变时的
响应和变化。
瞬态动力学研究系统的瞬间行为和瞬间变化情况,把握
系统从开始到稳定状态的过程。
稳态动力学指的是系统在长时间运行后,达到一个平衡状态时的
行为和特征。
稳态动力学研究系统在稳定状态下的性质、稳定性和平
衡点的特点。
瞬态动力学和稳态动力学是研究系统动力学行为的两个重要方面,它们相互关联和相互作用。
瞬态动力学是系统达到稳态前的过渡过程,稳态动力学则是系统达到稳定状态后的长期行为。
二者共同揭示了系
统在不同时间尺度下的性质和演化规律,对于了解系统的动力学特性
和优化系统设计具有重要意义。