基本初等函数 练习题
- 格式:pdf
- 大小:193.75 KB
- 文档页数:3
基本初等函数练习题基本初等函数练习题函数是数学中的重要概念,它描述了一种映射关系,将一个集合中的元素映射到另一个集合中的元素。
而初等函数则是指可以由有限次的四则运算、指数和对数运算以及三角函数和反三角函数运算得到的函数。
在数学学习中,初等函数是一个基础且重要的概念,下面我们来练习一些基本初等函数的题目。
1. 计算函数f(x) = 3x + 2在x = 5处的值。
解答:将x = 5代入函数f(x) = 3x + 2中,得到f(5) = 3 * 5 + 2 = 17。
所以函数在x = 5处的值为17。
2. 求函数g(x) = x^2 - 4x + 3的零点。
解答:零点即函数的解,即g(x) = 0。
将g(x) = x^2 - 4x + 3置零,得到x^2 -4x + 3 = 0。
通过求根公式,我们可以得到x = 1和x = 3。
所以函数的零点为x = 1和x = 3。
3. 计算函数h(x) = log2(x)在x = 8处的值。
解答:将x = 8代入函数h(x) = log2(x)中,得到h(8) = log2(8)。
由于2的多少次方等于8,所以log2(8) = 3。
所以函数在x = 8处的值为3。
4. 求函数k(x) = sin(x) + cos(x)的最大值和最小值。
解答:由于三角函数的取值范围在[-1, 1]之间,所以sin(x)和cos(x)的最大值和最小值都是1和-1。
所以函数k(x) = sin(x) + cos(x)的最大值为1 + 1 = 2,最小值为-1 - 1 = -2。
5. 计算函数m(x) = e^x在x = 2处的值。
解答:将x = 2代入函数m(x) = e^x中,得到m(2) = e^2。
e是一个数学常数,约等于2.71828。
所以函数在x = 2处的值为e^2。
通过以上的练习题,我们可以巩固对基本初等函数的理解和运用。
初等函数在数学中的应用非常广泛,它们可以描述各种各样的数学关系和现象。
(完整版)基本初等函数基础习题基本初等函数基础习题一、选择题1、 以下函数中,在区间 0,不是增函数的是()A. y2 xB.y lg xC.yx 3D.y1x2、函数 y =log 2 x +3( x ≥1)的值域是( )A. 2,B.(3,+ ∞)C. 3,D.(- ∞,+ ∞)3、若 M{ y | y 2x }, P { y | yx 1} ,则 M ∩P()A. { y | y 1}B. { y | y 1}C. { y | y0}D. { y | y 0}4、对数式 b log a 2 (5a) 中,实数 a 的取值范围是()A.a>5,或 a<2B.2<a<5C.2<a<3,或 3<a<5D.3<a<45、 已知 f (x)a x ( a 0且 a 1) ,且 f ( 2)f ( 3) ,则 a 的取值范围是( )A. a 0B.a 1C.a 1D.0 a 16、函数 f ( x) | log 1 x | 的单一递加区间是2A 、 (0, 1]B 、 (0,1]C 、(0,+∞)D 、 [1, )27、图中曲线分别表示 yl o g a x , y l o g b x , y l o g c x ,y l o g d x 的图象, a, b, c, d 的关系是()yy=log xay=log b xA 、 0<a<b<1<d<cB 、0<b<a<1<c<dC 、 0<d<c<1<a<bD 、0<c<d<1<a<bO1xy=log c x8、已知幂函数f(x) 过 点 ( 2 ,2 ), 则 f(4) 的 值 为y=log d x2()A 、1B 、 1C 、 2D 、 82、a=log 0.5 ,b=log 2,c=log35,则()9A.a < b < cB.b <a <cC.a <c < bD.c <a <b10 已知 y log a ( 2 ax) 在[ 0,1]上是 x 的减函数,则 a 的范围A.(0 , 1)B.(1,2) C.(0 ,2)D.[2,+∞]二、填空题11、函数 ylog 1 ( x 1) 的定义域为.212. 设函数 fxf 2xx 4,则 f log 2 3 =x2 x 414、函数 f ( x )lg (3x 2) 2 恒过定点三、解答题:15、 求以下各式中的 x 的值 (1)ln (x 1) 12x 11 x 2(2) a, 此中 a 且 1.a0 a16、点( 2,1)与( 1,2)在函数 f x2axb的图象上,求 f x 的分析式。
基本初等函数练习卷一、选择题(本大题共12小题,每小题5分,共60分) 1、函数1213log (1)(1)y x x -=++-的定义域是()A .(-1,0)B .(-1,1)C .(0,1)D .(0,1]2、下列函数在(0,+∞)上是增函数并且是定义域上的偶函数的是( )A .23y x = B .12xy ⎛⎫= ⎪⎝⎭C .y =ln xD .y =x 2+2x +33、已知x x f 26log )(=,则=)8(f ( )A.34 B. 8 C. 18 D.21 4、已知函数e 1,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩那么f (ln 2)的值是( )A .0B .1C .ln(ln 2)D .25、函数x y a =与log (0,1)a y x a a =->≠且在同一坐标系中的图象可能是( )A B C D6、设a =log 0.50.6,b =log 1.10.6,c =1.10.6,则a ,b ,c 的大小关系是( )A .a <b <cB .b <c <aC .b <a <cD .c <a <b 7、函数(为自然对数的底数)对任意实数、,都有( )A. B. C. D. 8、已知幂函数()f x 的图象经过点(4,2), 则下列命题正确的是( )A. ()f x 是偶函数B. ()f x 是单调递增函数C. ()fx 的值域为R D. ()f x 在定义域内有最大值9、若y=log a (2-ax)在[0,1]上是减函数,则a 的取值范围为( ) (A)(0,1) ( B)(1,2) (C)(0,2) (D)(1,+∞)10、已知函数2()1,()43x f x e g x x x =-=-+-,若有()()f a g b =,则b 取值范围( )()()()f x y f x f y =+()()()f x y f xf y =()()()fx y fx fy +=+()()()f x y f x f y +=y x e ()xf x e=yxyxyxy xA. 22,22⎡⎤-+⎣⎦B. (22,22)-+C. []1,3D. ()1,311、函数y =e|-ln x |-|x -1|的图象大致是( )12、给出幂函数①f(x)=x ;②f(x)=x 2;③f(x)=x 3;④f(x)=x ;⑤f(x)=1x. 其中满足条件f 12()2x x +>12()()2f x f x + (x 1>x 2>0)的函数的个数是 ( ) A .1个 B .2个 C .3个 D .4个 二、填空题(本大题共4小题,每小题4分,共16分)13、当a >0且a ≠1时,函数f (x)=a x -2-3必过定点 . 14、函数652-+-=x x y 的单调增区间是15、已知函数2()f x x bx c =++,对任意x R ∈都有(1)()f x f x +=-,则(2)f -、 (0)f 、(2)f 的大小顺序是 .16.下列说法中:① 若2()(2)2f x ax a b x =+++(其中[21,4]x a a ∈-+)是偶函数,则实数2b =; ② 20132013)(22-+-=x x x f 既是奇函数又是偶函数;③ 函数()()43ln 2--=x x x f 的减区间是⎪⎭⎫ ⎝⎛+∞,23;④ 已知()f x 是定义在R 上的不恒为零的函数,且对任意的,x y R ∈都满足()()()f x y x f y y f x ⋅=⋅+⋅,则()f x 是奇函数。
基本初等函数测试题一、选择题 (本大题共 12 个小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.有以下各式:① na n = a ; ②若 a ∈ R ,则 (a 2- a + 1)0= 1;③ 3 x 44y ; ④6- 2 2= 3- 2.y3x3此中正确的个数是 ()A . 0B . 1C .2D .3|x|的图象是 ()2.函数 y = a (a>1)3.以下函数在 (0,+∞ )上是增函数的是 ()-xB . y =- 2x1A . y = 3C . y = logxD . y = x24.三个数 log 21, 20.1,2-1 的大小关系是 ()51-1--11 -A . log 25<2<2 1 B . log 25<2 1<20.1 C . 2<2 1<log 25 D . 2<log 25<215.已知会合 A = { y|y = 2x , x<0} , B = { y|y =log 2x} ,则 A ∩ B = ()A . { y|y>0}B . { y|y>1}C . { y|0<y<1}D .6.设 P 和 Q 是两个会合,定义会合 P -Q = { x|x ∈ P 且 x?Q} ,假如 P ={ x|log x < 1} ,Q2= { x|1<x<3} ,那么 P -Q 等于 ( )A . { x|0< x < 1}B . { x|0< x ≤ 1}C . { x|1≤ x <2}D . { x|2≤ x < 3}17.已知 0<a<1, x = log a 2+ log a 3, y =2log a 5,z =log a 21- log a 3,则 ( )A . x>y>zB . x>y>xC . y>x>zD . z>x>y8.函数 y = 2x - x 2 的图象大概是 ()9.已知四个函数① y = f 1(x);② y = f 2 (x);③ y =f 3(x);④ y = f 4( x)的图象以以下图:- 1 -则以下不等式中可能建立的是 ()A . f (x + x )= f (x )+ f (x )B . f (x + x )=f (x )+ f(x )112111 22122122C . f 3(x 1+ x 2) =f 3(x 1)+ f 3(x 2 )D . f 4(x 1+ x 2)=f 4(x 1)+ f 4(x 2)f ( x)12-1, f 3 2,则 f 1 2 310.设函数x 2(x)= x(2010))) 等于 ()1, f (x)= x ( f (fB . 2010211A . 2010 C.2010 D. 201211.函数 f(x)=3x 2 + lg(3 x + 1)的定义域是 ( )1-xA. -∞,- 1B. - 1, 133 3C. -1, 1D. - 1,+∞332e x -1, x<2,12. (2010 石·家庄期末测试)设 f(x)=则 f[ f(2)] 的值为 ()log 3 x 2- 1 , x ≥ 2.A . 0B . 1C . 2D . 3二、填空题 (本大题共 4 小题,每题 5 分,共 20 分.把答案填在题中横线上 )13. 给出以下四个命题:(1)奇函数的图象必定经过原点;(2)偶函数的图象必定经过原点;1(3)函数 y = lne x 是奇函数; (4)函数 yx 3 的图象对于原点成中心对称.此中正确命题序号为 ________. (将你以为正确的都填上 )14. 函数 y log 1 (x 4) 的定义域是.215.已知函数 y = log a (x +b)的图象以以下图所示,则 a = ________, b = ________.16.(2008 上·海高考 )设函数 f(x)是定义在 R 上的奇函数, 若当 x ∈ (0,+∞ )时,f(x)= lgx ,则知足 f(x)>0 的 x 的取值范围是 ________.- 2 -三、解答题 (本大题共 6 小题,共 70 分.解答应写出必需的文字说明、证明过程或演算步骤 )17. (本小题满分 10 分 )已知函数 f( x)= log 2(ax + b),若 f(2)= 1, f(3)= 2,求 f(5).118. (本小题满分 12 分 )已知函数 f (x)2 x 2 .(1)求 f(x) 的定义域; (2) 证明 f(x)在定义域内是减函数.2x - 1 19. (本小题满分 12 分 )已知函数f( x)=2x + 1.(1)判断函数的奇偶性; (2) 证明: f( x)在(-∞,+∞ )上是增函数.220. (本小题满分 12 分 )已知函数 f x(m 2 m 1)x mm 3是幂函数 , 且 x ∈ (0,+∞ )时, f(x)是增函数,求 f(x)的分析式.21. (本小题满分 12 分 )已知函数 f( x)= lg(a x -b x ), (a>1>b>0) .(1)求 f(x)的定义域;(2)若 f(x)在 (1,+∞ )上递加且恒取正当,求a ,b 知足的关系式.1122. (本小题满分 12 分 )已知 f(x)= 2x -1+2 ·x.(1)求函数的定义域;(2)判断函数 f(x)的奇偶性;(3)求证: f(x)>0.- 3 -参照答案答案速查: 1-5 BCDBC6-10 BCACC11-12 CC1.分析: 仅有②正确. 答案: Ba x , x ≥0 ,2.分析: y = a |x|=-且 a>1 ,应选 C.答案: Ca x, x<0 ,3.答案: D4.答案: B5.分析:A = { y|y = 2x ,x<0} = { y|0<y<1} ,B = { y|y = log 2x} = { y|y ∈ R} ,∴ A ∩ B ={ y|0<y<1} .答案: C6.分析: P ={ x|log 2x<1} = { x|0<x<2} , Q ={ x|1<x<3} ,∴ P - Q = { x|0<x ≤1} ,应选 B.答案: B17.分析: x = log a 2+ log a 3= log a 6= 2log a 6, z = loga21- loga 3= loga 7= 2log 7.1a∵ 0<a<1 ,∴ 111log a 7.2 log a 5> log a 6> 22 即 y>x>z.答案: C8.分析: 作出函数 y =2x 与 y = x 2 的图象知,它们有3 个交点,因此 y =2x - x 2 的图象与x 轴有 3 个交点,清除B 、C ,又当 x<- 1 时, y<0,图象在 x 轴下方,清除 D.应选 A.答案: A9.分析: 联合图象知, A 、 B 、 D 不建立, C 建立. 答案: C10.分析: 依题意可得 f 3(2010) = 20102, f 2(f 3(2010))22 -1-2 = f 2(2010 ) =(2010 ) = 2010 ,∴ f 1(f 2(f 3(2010))) = f 1(2010 - 2-2 1-11 .)= (2010) =2010=20102答案: C1-x>0x<1-111.分析: 由 ?1? <x<1. 答案: C3x +1>0x>- 3312.分析: f(2) = log 3(22- 1)= log 33= 1,∴ f[f(2)] = f(1) = 2e 0= 2.答案: C13.分析: (1) 、 (2)不正确,可举出反例,如1, y = x -2,它们的图象都可是原点. (3)y = x中函数 y = lne x=x ,明显是奇函数.对于(4) , y =x 13是奇函数,而奇函数的图象对于原点对称,因此 (4)正确.答案: (3)(4)- 4 -14.答案: (4,5]15.分析: 由图象过点 (- 2,0), (0,2)知, log a (- 2+ b)= 0, log a b = 2,∴- 2+ b =1,∴ b= 3, a 2= 3,由 a>0 知 a = 3.∴ a = 3, b = 3.答案: 3 316.分析: 依据题意画出 f(x)的草图,由图象可知,f(x)>0 的 x 的取值范围是-1<x<0 或x>1.答案: (- 1,0)∪ (1,+∞ )17.解:由 f(2) log 2 2a + b =12a + b =2 ? a = 2, = 1,f(3)= 2,得 3a + b = 2? ∴ f(x)= log 2(2xlog 2 3a + b =4 b =- 2. - 2),∴ f(5)= log 28 =3.18.∵ x 2>x 1≥ 0,∴ x 2- x 1>0, x 2+ x 1>0,∴ f(x 1) - f(x 2)>0 ,∴ f(x 2)<f( x 1).于是 f(x)在定义域内是减函数.19.解: (1) 函数定义域为 R.2-x - 11- 2x2x - 1f(- x)=- x+ 1 =x =-x=- f(x),21+ 22 + 1因此函数为奇函数.1 2< +∞ ,(2)证明:不如设- ∞<x <x∴ 2x 2>2x 1.又由于 f(x 2)- f(x 1)= 2x 2- 1 - 2x 1- 1 = 2 2x 2- 2x 12 1 1 2x 2>0,2x + 1 2x + 1 2x + 1 +1∴ f(x 2)> f(x 1).因此 f(x)在 (- ∞ ,+ ∞ )上是增函数.20.解: ∵ f(x)是幂函数,∴ m 2- m - 1= 1, ∴ m =- 1 或 m = 2,∴ f(x)= x -3 或 f(x)= x 3,而易知 f(x)= x -3 在 (0,+ ∞ )上为减函数,f(x)=x 3 在 (0,+ ∞ )上为增函数. ∴ f(x)= x 3.21.解: (1) 由 a x- b x>0,得 a x>1.ba∵ a>1>b>0,∴ b >1, ∴ x>0.即 f(x)的定义域为 (0,+ ∞ ).(2)∵ f( x)在 (1,+ ∞ )上递加且恒为正当,∴ f(x)>f(1) ,只需 f(1)≥ 0,即 lg(a - b)≥ 0,∴ a - b ≥1.∴ a ≥ b + 1 为所求22.解: (1) 由 2x - 1≠ 0 得 x ≠0,∴函数的定义域为 { x|x ≠0, x ∈ R} . (2)在定义域内任取 x ,则- x 必定在定义域内. 1 1 f(- x)= 2-x - 1+ 2 (- x)=2xx +1 ( -x) =- 1+2x ·x = 2x +1 ·x.1-2 22 1- 2x 2 2x - 111 2x + 1而f(x)=2x - 1+2 x = 2 2x -1 ·x , ∴ f(- x)= f(x).∴ f(x)为偶函数.(3)证明:当 x>0 时, 2x >1,11∴2x - 1+2 ·x>0.又 f(x)为偶函数,∴当 x<0 时, f(x)>0.故当 x ∈ R 且 x ≠ 0 时, f(x)>0.。
基本初等函数(1)综合练习题一、选择题:1、某种放射性元素,100年后只剩下原来质量的一半,现在有这种元素1g ,3年后剩下( )A 、1005.03⨯g B 、(1-0.5%)3g C 、0.925g D 、100125.0g 2、若集合M={y/y=2x ,x ∈R },P={y/y=x 2 ,x ∈R },则下列四个式子成立的是( )A 、M ∩P={2,4}B 、M ∩P={4,16}C 、M=PD 、M P3、设f(log 2x)= 2x (x>0),则f(3)的值是( )A 、128B 、256C 、512D 、84、log 241,20.1, 20.2的大小关系是( ) A 、log 241< 20.2<20.1 B 、log 241<20.1< 20.2 C 、20.1< 20.2<log 241 D 、20.1<log 241< 20.2 5、已知f(x)=a x ,g(x)=x a1log ,(a>0且a ≠1).若f(2).g(2)<0,则f(x)与g(x)的图像只能是( )A 、B 、C 、D 、6、以下函数都定义在(0,2)上,那么增函数是( )A 、y= )1(log 21+xB 、y= xC 、y= -xD 、y=x 2-4x+57、已知3a =5b =A,且b a 1)1(=2,则A 的值是( ) A 、15 B 、±15 C 、15 D 、2258、当x>0时,函数f(x)=(a 2-1)x 的值总大于1,则实数a 的取值范围是( )A 、1<a<2B 、|a|<1C 、|a|>2D 、|a|>19、若0<a<1,则函数y=log a (x+8)的图像不经过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限10、下列函数中,能同时具有性质:①图像过点(0,1)②在区间(-∞,0)上是减函数③是偶函数的一个是( )A 、f(x)=31x B 、f(x)=x )31( C 、f(x)=x 3 D 、f(x)=)3(log 3+x 11、下列函数满足f(x+1)=2000f(x)的是( )A 、2000xB 、2000xC 、x+2000D 、x x 2000log12、函数①y=kx 3; ②y=xk ;③x k k y )1lg(2+-=;④x k k y )2lg(2+-=(k 为非零实常数)中,在其定义域内必为增函数的是( )A 、①②B 、②④C 、④D 、①④二、填空题:13、已知2x +2-x =3,则8x +8-x =—————— 14、化简3421413223)(a bb a ab b a ,(其中a>0,b>0)的最简结果是——————15、函数y=3(1-2x-1)的定义域为——————16、某种细胞开始时有2个,1h 后分裂成4个并死去1个,2h 后分裂成6个并死去1个,3h 后分裂成10个并死去1个,……,按这种规律进行下去,6h 后细胞的存活数为个——————。
(一)指数运算例1 计算:526743642++--- 例2 求值:238、12100-、31()4-、3416()81- 例3 用分数指数幂表示下列各式(其中各字母均为正数)(1)34a a ⋅;(2)a a a ;(2)3324()a b +;(二)指数函数的性质例1 下列函数是指数函数的是( )A .2y x =B .2x y =C .12x y += D .132x y +=⨯ 例2 函数22(0,1)x y a a a -=->≠ 且的图象恒过定点________________例3 比较下列各组数的大小(1)0.245()6-与145()6- (2)1()ππ-与1 (3)2(0.8)-与125()4- 例4 设a 是实数,2()()21x f x a x R =-∈+ (1)证明:不论a 为何实数,()f x 均为增函数;(2)试确定a 的值,使得()f x 为奇函数 例5 已知0a >,且1a ≠,11()12x f x a =--,则()f x 是( ) A .奇函数 B .偶函数 C .非奇非偶函数 D .函数的奇偶性与a 有关 例6 若函数221x x y aa =+-(01)a a >≠且在[1,1]x ∈-上的最大值为14,求a 的值.三、实战演练 1、化简:3322111143342(0,0)()a b ab a b a b a b ->>=_______________2、已知12102a -=,31032b =,则32410=a b +_______________ 3、函数2(33)x y a a a =-+是指数函数,则a 的值为4、函数()x b f x a -=的图像如图,其中a 、b 为常数,则下列结论正确的是( )A .B .C .D .5、比较大小:①0.70.8a =,0.90.8b =,0.81.2c =;②01, 2.50.4-,0.22-, 1.62.5; 7、已知定义域为R 的函数12()2x x b f x a+-+=+是奇函数 (1)求a 、b 的值;(2)若对任意的,不等式恒成立,求k 的取值范围0,1<>b a 0,1>>b a 0,10><<b a 0,10<<<b a R t ∈0)2()2(22<-+-k t f t t f四、强化训练1、设a =b =c =,,a b c 的大小关系是_______________ 2、设137x =,则( ) A .21x -<<- B .32x -<<- C .10x -<< D .01x <<3、求函数的定义域和值域,并讨论函数的单调性、奇偶性4、已知定义在R 上的函数()22x xa f x =+,a 为常数 (1)如果()()f x f x =-,求a 的值;(2)当()f x 满足(1)时,用单调性定义讨论()f x 的单调性二、题型解析(一)对数计算例1 已知732log [log (log )]0x =,那么12x -=______________例2 计算:(1);(2);(3);(4)(二)对数运算例1 计算下列各式的值(1)1324lg 2493-(2(3) ; 例2 已知 , ,用,表示例3 若3484log 4log 8log log 16m ⋅⋅=,则m =______________例4 设3436x y ==,求21x y +的值四、强化训练1、已知2(3)4log 3233x f x =+,则的值等于例1 在(2)log (6)a x a -=-中,实数a 的取值范围是( )A .6a >或2a <B .26a <<C .23a <<或36a <<D .34a << 例2函数y = )A .[1,)+∞B .2(,)3+∞C .2[,1]3D .2(,1]3例3 若4log 15a<(01)a a >≠且,求实数a 的取值范围 2121x x y -=+9log27((2log20.4log 10.21log 35-2log 3a =3log 7b =a b 42log 568(2)(4)(8)(2)f f f f ++++例4 比较下列各组数中两个值的大小:(1),;(2),;(3),例5 求函数22log (56)y x x =-+的定义域、值域、单调区间例6 函数在上的最大值比最小值大,求的值;三、实战演练1、求下列函数的定义域(1)2(1)log (23)x y x x -=-++;(2)y =(01)a a >≠且2、已知log (31)a a -恒为正数,求a 的取值范围3、比较下列各题中两个数值的大小: ; ; ;4、设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为12,则a = 5、若log (2)a y ax =-在[0,1]上是减函数,则a 的取值范围是 ( )A .(0,1)B .(0,2)C .(1,2)D .(2,)+∞四、强化训练1、已知函数()f x 满足:4x ≥,则1()()2x f x =;当4x <时()(1)f x f x =+,则2(2log 3)f += A .124 B .112 C .18 D .382、设01a a >≠且,函数2lg(23)()x x f x a -+=有最大值,则不等式2log (57)0a x x -+>的解集为 .3、已知01a a >≠且,21(log )()1a a f x x a x=-- (1)求()f x ;(2)判断()f x 的奇偶性与单调性;(3)对于()f x ,当(1,1)x ∈-时,有2(1)(1)0f m f m -+-<,求m 的集合M4、若x 满足21422(log )14log 30x x -+≤,求2()log 2x f x =最大值和最小值2log 3.42log 8.50.3log 1.80.3log 2.7log 5.1a log 5.2a (0,1)a a >≠log a y x =[2,4]1a 22log 3log 3.5和0.30.2log 4log 0.7和0.70.7log 1.6log 1.8和23log 3log 2和。
专题二:基本初等函数1、函数12y x =的图象大致是( )A . B. C. D.2、已知lg3a =,lg 2b =,1lg 2c =,那么a ,b ,c 的大小关系为( )A. c b a >>B. c a b >>C. a c b >>D. a b c >> 3、如果函数a f(x)=x 的图像经过点(2,8),那么a 等于( ) A. 1 B. 2 C..3 D.. 44、已知四个函数22,,2,log x y x y x y y x ====,其中偶函数是( ) A.2y x = B. y x = C. 2x y = D. 2log y x =5、已知函数2,0,(),0.x x f x x x ⎧≥=⎨-<⎩如果0()2f x =,那么实数0x 的值为( )6、在函数1222lg ,1,,y x y x y x x y x ==+=-=中,偶函数是( ). A .lg y x = B .21y x =+ C .2y x x =- D .12y x = 7、实数22log 6log 3-的值为( ).A .12B . 1C . 2D . 2log 38、如果函数()(1)x f x a a =>的图像经过点(3,8),那么实数a 的值为( ) A. 2 B. 3 C.4 D. 24 9、实数lg 42lg5+的值为( )10、如果函数22,0()log ,0x x f x x x ⎧≤=⎨>⎩那么(2)f 等于( )A.0B. 14C..12D..1(A )4(B )0(C )1或4(D )1或2-(A )2(B )5(C )10(D )2011、已知函数2,0,()1,0.x x f x x x -⎧⎪=⎨-<⎪⎩≥如果01()2f x =,那么0x 等于( )A. 1或2-B. 1-或2C. 1或2D. 1-或2-12、已知四个函数3y x =,2y x =,3x y =,3log y x =,其中奇函数是( )A. 3y x =B. 2y x =C. 3x y =D.3log y x =13、已知函数2x y =的图象经过点()01,y -,那么0y 等于( ) (A)12 (B)12- (C) 2 (D)2- 14、四个函数1y x -=,12y x =,2y x =,3y x =中,在区间()0,+∞上为减函数的是( ) (A) 1y x -= (B) 12y x = (C) 2y x = (D) 3y x = 15、函数()2log 1y x =+的图象大致是( )(A) (B) (C) (D)17、函数2log (1)y x =+的定义域是( )18、在函数3y x =,2x y =,2log y x =,y )19、已知函数()(0,1)x f x a aa =≠在区间[]1,0上最大值是2,那么a 等于( )A .14 B .12C .2D .4 20、在函数cos y x =,3y x =,x y e =,ln y x =中,奇函数是( )A . cos y x =B . 3y x =C . x y e =D . ln y x =21、计算131()log 12-+的结果为.(A )(0,)+∞(B )(1,)-+∞(C )(1,)+∞(D )[1,)-+∞(A )3y x =(B )2x y =(C )2log y x =(D )y22、如果函数2log y x =的图像经过点0(4,)A y ,那么0y = .23、已知函数()2x f x =,如果a =lg3,lg 2,b =那么()f a ()f b (填上“>”,“=”或“<”)24、已知二次函数2()4f x x x =-+的图像顶点为C ,与x 轴相交与A B 、两点,那么tan ACB ∠= 。
基本初等函数练习题1. 函数f(x) = 2x^2 - 3x + 1,求f(2)的值。
解析:代入x=2,得出:f(2) = 2(2)^2 - 3(2) + 1= 2(4) - 6 + 1= 8 - 6 + 1= 3所以,f(2)的值为3。
2. 求函数g(x) = 3x^3 + 2x^2 - 5x的导函数。
解析:对于函数g(x),使用幂函数的求导法则,得到:g'(x) = 3(3x^2) + 2(2x) - 5= 9x^2 + 4x - 5所以,函数g(x)的导函数为g'(x) = 9x^2 + 4x - 5。
3. 函数h(x) = log₃(x - 2),求h(10)的值。
解析:代入x=10,得出:h(10) = log₃(10 - 2)= log₃(8)因为log₃(8)表示3的几次方等于8,即3^? = 8。
而3^2 = 9,3^3 = 27,所以8位于3^2和3^3之间。
因此,log₃(8) = 2.xxx,其中xxx是一个小于1的数。
所以,h(10)的值约等于2.xxx。
4. 求函数j(x) = e^x 的反函数。
解析:对于函数j(x) = e^x,令y = e^x,则可以表示为x = ln(y)。
为了求得函数j(x)的反函数,交换x和y的位置并解出y即可。
解得,y = ln(x)。
所以,函数j(x)的反函数为j^(-1)(x) = ln(x)。
5. 函数k(x) = |x - 3|,求k(-2)的值。
解析:代入x=-2,得出:k(-2) = |-2 - 3|= |-5|= 5所以,k(-2)的值为5。
6. 求函数m(x) = 2x + 1 的零点。
解析:对于函数m(x),令y = 2x + 1,令y = 0,求得x的值。
解得,2x + 1 = 0=> 2x = -1=> x = -1/2所以,函数m(x)的零点为x = -1/2。
通过以上的练习题,不仅可以使我们更加熟悉和掌握基本初等函数的运算和性质,也对函数的图像、导函数、反函数以及零点有了更深入的理解。
第二章 基本初等函数(I )一、选择题1、 函数1log (54)x x y +=-的定义域是( )。
A 、 (1,0)-B 、 4(0,log 5)C 、 4(1,log 5)-D 、 4(1,0)(0,log 5)- 2、 函数log (2)1a y x =++的图象过定点( )。
A 、(1,2) B 、(2,1)C 、(-2,1)D 、(-1,1)3、 设2(log )2(0)x f x x =>,则(3)f 的值为( )。
A 、 128 B 、 256C 、 512D 、 84、25log ()5a -化简的结果是( )。
A 、-a B 、 2aC 、 |a |D 、 a5、 函数0.21x y -=+的反函数是( )。
A 、 5log 1y x =+B 、 5log (1)y x =-C 、 log 51x y =+D 、 5log 1y x =-6、 若231log a y x -=在(0,+∞)内为减函数,且x y a -=为增函数,则a 的取值范围是( )。
A 、 3(,1)3B 、 1(0,)3C 、 3(0,)3D 、 36(,)337、 设0,1,,0x x x a b a b ><<>且,则a 、b 的大小关系是( )。
A 、b <a <1B 、 a <b <1C 、 1<b <aD 、 1<a <b8、 下列函数中,值域为(0,+∞)的函数是( )。
A 、 12xy =B 、 112xy -⎛⎫= ⎪⎝⎭C 、 1()12x y =-D 、 12x y =-9、 设偶函数()f x 在[0,π]上递减,下列三个数a =12(lg ),(),()10023f b f c f ππ==-的关系为( )。
A 、 a >b >cB 、 b >a >cC 、 b >c >aD 、 c >a >b10、 已知0<a <1,b >1,且ab >1,则下列不等式中成立的是( )。
基本初等函数练习题一、选择题1. 下列函数中,哪一个是奇函数?A. y = x^2B. y = |x|C. y = sin(x)D. y = cos(x)2. 函数f(x) = 2x^3 - 5x + 1在x=1处的导数值是:A. 6B. 3C. 4D. 53. 函数y = ln(x)的值域是:A. (-∞, 0)B. (0, +∞)C. (-∞, +∞)D. [0, +∞)4. 函数f(x) = x^2 + 3x + 2在区间[-4, 0]上是:A. 单调递增B. 单调递减C. 先减后增D. 先增后减5. 函数g(x) = √x的最小值出现在x等于:A. 0B. 1C. 2D. 没有最小值二、填空题6. 若f(x) = 3x - 2,则f(1) = _______。
7. 函数y = 2^x的反函数是 _______。
8. 函数y = x^3在x=-1处的切线斜率是 _______。
9. 若f(x) = sin(x) + cos(x),则f'(x) = _______。
10. 函数y = e^x的微分dy等于 _______。
三、简答题11. 给定函数f(x) = 4x^3 - 2x^2 - 5x + 7,请计算其在x=0和x=2时的值。
12. 描述函数y = ln(x)在x=1处的切线方程。
13. 证明函数f(x) = x^2在(-∞, +∞)上是凸函数。
14. 求函数g(x) = √x在[1, 4]上的单调性,并说明理由。
15. 给定函数h(x) = x^3 - 6x^2 + 11x - 6,请找出其极值点。
四、计算题16. 计算定积分∫[0,1] (3x^2 - 2x + 1) dx。
17. 利用换元积分法计算定积分∫[1, e] (2/x) dx。
18. 求不定积分∫(2x + 1)^5 dx。
19. 利用分部积分法计算不定积分∫x * e^x dx。
20. 求函数f(x) = x^2 * sin(x)在区间[0, π]上的定积分。