晶体管及其基本放大电路-10
- 格式:ppt
- 大小:619.00 KB
- 文档页数:20
第3章 晶体三极管及其放大电路3.1 教学基本要求教 学 基 本 要 求主 要 知 识 点熟练掌握 正确理解 一般了解晶体管的结构及其工作原理√ 电流分配与放大作用√ 晶体管三极管 晶体管的工作状态、伏安特性及主要参数√ 放大电路的组成原则及工作原理√ 放大电路的主要技术指标、查阅电子器件相关数据资料 √ 图解法 √ 静态工作点估算法 √ 三极管放大电路的分析方法微变等效电路法√三种组态基本放大电路比较√静态工作点的选择与稳定、基本电路设计√耦合方式及直接耦合电路的特殊问题√ 多极放大电路 分析计算方法 √频率响应的基本概念 √三极管放大电路基础放大电路的频率响应频率响应的分析计算方法√3.2 重点和难点一、重点1.正确理解三极管的结构、电流分配、伏安特性和“放大”的实质。
2.三极管放大电路的图解法、小信号模型和放大电路的小信号模型分析方法。
3.放大电路中静态工作点的稳定问题。
二、难点1.正确理解NPN 和PNP 型三极管的组成及其工作原理。
2.三极管放大电路的小信号模型分析方法和工作点稳定问题。
3.基本放大电路的设计3.3 知识要点三极管的结构及类型 电流分配及电流放大作用 1.双极型三极管 共发射极特性、工作区域 主要参数“放大”的概念“放大”的概念及条件 三极管的内部条件外部条件 放大电路的组成、各元器件的作用2.共发射极放大电路 固定偏置共发射极放大电路的原理和工作波形 共发射极放大电路的三种工作状态与失真分析 分析方法与步骤静态分析3.共发射极放大电路的图解法动态分析失真与最大不失真输出电压三极管的小信号模型4.小信号模型分析法H参数的物理意义共发射极放大电路的小信号模型分析方法5.共发射极放大电路的工作点稳定问题6.共发射极、共基极和共集电极放大电路的特点阻容耦合方式直接耦合方式7.多级放大器变压器耦合方式光电耦合方式多级放大器的分析频率响应的基本概念RC低通电路的特性及波特图8.放大电路的频率响应RC高通电路的特性及波特图BJT的高频小信号混合π型模型单级阻容耦合放大电路的频率特性多级放大电路的频率特性3.4 主要内容3.4.1 晶体三极管3.4.1.1 晶体三极管的分类及结构晶体三极管通常简称为三极管,也称为晶体管和半导体三极管。
晶体管基本放大电路的基本原理(一)晶体管基本放大电路的基本什么是晶体管基本放大电路?晶体管基本放大电路是一种常见的电子放大器电路,通过晶体管来放大电信号的幅度。
晶体管的基本原理•晶体管是一种半导体器件,由三个区域组成:发射区、基区和集电区。
•发射区负责控制电流的注入,基区负责控制电流的传导,而集电区负责控制电流的输出。
•晶体管的工作原理主要是通过控制基极电流来调节集电极电流,从而实现电信号的放大。
NPN型晶体管基本放大电路原理1.输入信号通过电容耦合的方式传入晶体管的基极。
2.当输入信号的电压大于晶体管的基极-发射极压差时,基极-发射极结极的二极管会导通。
3.当基极-发射极二极管导通后,电流会从基极流入基区,并将集电极电流放大到较大的数值。
4.放大后的电流通过电容耦合方式输出到下一级电路或负载。
PNP型晶体管基本放大电路原理1.输入信号通过电容耦合的方式传入晶体管的基极。
2.当输入信号的电压小于晶体管的基极-发射极压差时,基极-发射极结极的二极管会导通。
3.当基极-发射极二极管导通后,电流会从集电极流入基区,并将基极电流放大到较大的数值。
4.放大后的电流通过电容耦合方式输出到下一级电路或负载。
晶体管基本放大电路的特点•可以实现电信号的放大。
•晶体管工作在放大区,具有一定的放大倍数。
•可以调节偏置电流和增益来满足不同应用场景的需求。
晶体管基本放大电路的应用•音频放大器:将微弱的音频信号放大到足够驱动扬声器的幅度。
•射频放大器:将微弱的射频信号放大到足够驱动天线的幅度。
总结晶体管基本放大电路是一种常见的电子放大器电路,利用晶体管的放大特性可以将微弱的电信号放大到合适的幅度。
通过控制偏置电流和增益,可以满足不同应用场景的需求。
在音频放大器和射频放大器等领域有广泛的应用。
晶体管的工作模式晶体管在放大电路中有三种工作模式:放大区、截止区和饱和区。
放大区(Active Region)放大区是晶体管的工作状态,在这个状态下,晶体管的基极电流和集电极电流都存在,且集电极电流大于零。