晶体管及其放大电路
- 格式:ppt
- 大小:2.98 MB
- 文档页数:135
第3章 晶体三极管及其放大电路3.1 教学基本要求教 学 基 本 要 求主 要 知 识 点熟练掌握 正确理解 一般了解晶体管的结构及其工作原理√ 电流分配与放大作用√ 晶体管三极管 晶体管的工作状态、伏安特性及主要参数√ 放大电路的组成原则及工作原理√ 放大电路的主要技术指标、查阅电子器件相关数据资料 √ 图解法 √ 静态工作点估算法 √ 三极管放大电路的分析方法微变等效电路法√三种组态基本放大电路比较√静态工作点的选择与稳定、基本电路设计√耦合方式及直接耦合电路的特殊问题√ 多极放大电路 分析计算方法 √频率响应的基本概念 √三极管放大电路基础放大电路的频率响应频率响应的分析计算方法√3.2 重点和难点一、重点1.正确理解三极管的结构、电流分配、伏安特性和“放大”的实质。
2.三极管放大电路的图解法、小信号模型和放大电路的小信号模型分析方法。
3.放大电路中静态工作点的稳定问题。
二、难点1.正确理解NPN 和PNP 型三极管的组成及其工作原理。
2.三极管放大电路的小信号模型分析方法和工作点稳定问题。
3.基本放大电路的设计3.3 知识要点三极管的结构及类型 电流分配及电流放大作用 1.双极型三极管 共发射极特性、工作区域 主要参数“放大”的概念“放大”的概念及条件 三极管的内部条件外部条件 放大电路的组成、各元器件的作用2.共发射极放大电路 固定偏置共发射极放大电路的原理和工作波形 共发射极放大电路的三种工作状态与失真分析 分析方法与步骤静态分析3.共发射极放大电路的图解法动态分析失真与最大不失真输出电压三极管的小信号模型4.小信号模型分析法H参数的物理意义共发射极放大电路的小信号模型分析方法5.共发射极放大电路的工作点稳定问题6.共发射极、共基极和共集电极放大电路的特点阻容耦合方式直接耦合方式7.多级放大器变压器耦合方式光电耦合方式多级放大器的分析频率响应的基本概念RC低通电路的特性及波特图8.放大电路的频率响应RC高通电路的特性及波特图BJT的高频小信号混合π型模型单级阻容耦合放大电路的频率特性多级放大电路的频率特性3.4 主要内容3.4.1 晶体三极管3.4.1.1 晶体三极管的分类及结构晶体三极管通常简称为三极管,也称为晶体管和半导体三极管。
电路中的晶体管与放大电路晶体管和放大电路是电子学中非常重要的概念,它们的存在和应用对于现代科技的发展起到了至关重要的作用。
本文将从晶体管的基本原理、结构和放大电路的工作原理来探讨电路中的晶体管与放大电路。
晶体管是一种半导体器件,由三个或更多不同类型的半导体材料组成。
它的基本原理是通过控制输入信号来实现输出信号的放大操作。
晶体管有三个电极:发射极、基极和集电极。
其中,基极和集电极之间的电压决定了晶体管的工作状态。
当基极与发射极之间的电压大于基极与集电极之间的电压时,晶体管处于导通状态;反之,晶体管处于截止状态。
利用这个特性可以控制电流的放大。
晶体管的结构可以分为NPN型和PNP型两种。
在NPN型中,发射极和基极是N型半导体,集电极是P型半导体;而在PNP型中,发射极和基极是P型半导体,集电极是N型半导体。
这两种结构有一些相似之处,但也有一些重要的不同。
放大电路是将输入信号放大到所需的幅度的电路。
它可以由一个或多个晶体管组成。
基本的放大电路有共射极放大电路、共集电极放大电路和共基极放大电路。
每种放大电路都有自己的特点和应用场景。
共射极放大电路是晶体管放大电路中最常见的形式之一,它的基本结构是晶体管的发射极与地相连,基极接收输入信号,而集电极提供放大后的输出信号。
这种放大电路具有放大增益高、输入电阻低、输出电阻高的特点,适用于信号放大和驱动负载。
共集电极放大电路也被称为电流跟随器或者阻容耦合放大电路。
它的特点是输入和输出均与集电极相连,而发射极作为引入信号的引线。
这种放大电路有较高的输入阻抗和输入功耗,适用于需要较高输入阻抗和低输出阻抗的场合。
共基极放大电路的特点是输入与基极相连,而输出与集电极相连。
它具有较高的电流放大系数和带宽,适用于需要较高频率响应和较小信号放大的场合。
在RF和微波电路中,这种放大电路得到广泛应用。
当然,以上只是放大电路的一些基本形式,实际的电路设计中还会根据实际需求进行各种不同的变形和组合。
2、晶体管放大电路原理2.1 晶体管和FET 的工作原理2.1.1晶体管和FET 的放大工作的理解晶体管和FET 的放大作用:晶体管或FET 的输入信号通过器件而出来,晶体管或FET 吸收此时输入信号的振幅信息,由电源重新产生输出信号,由于该输出信号比输入信号大,可以看成将输入信号放大而成为输出信号。
这就是放大的原理。
2.1.2晶体管和FET 的工作原理1、双极型晶体管的工作原理晶体管内部工作原理:对流过基极与发射极之间的电流进行不断地监视,并控制集电极-发射极间电流源使基极-发射极间电流的β倍的电流流在集电极与发射极之间。
就是说,晶体管是用基极电流来控制集电极-发射极电流的器件。
电源电源输入输出输出(a )双极型晶体管(以NPN 型为例) (b )FET (以N 型JFET 为例)A被基极电流控制的电流源检测基极电流的电流计集电极(输出端)基极(输入端)发射极(公共端)双极型晶体管的内部原理2、FET 的工作原理FET 内部工作原理:对加在栅极与源极之间的电压进行不断地监视,并控制漏极-源极间电流源使栅极-源极间电压的g m 倍的电流流在漏极与源极之间。
就是说,FET 是用栅极电压来控制漏极-源极电流的器件。
2.1.3分立元件放大电路的组成原理放大电路的组成原理(应具备的条件)1放大器件工作在放大区(三极管的发射结正向偏置,集电结反向偏置;结型FET 与耗尽型MOSFET 可采用自偏压方式或分压式偏置或混合偏置方式,增强型MOSFET 则一定要采用分压式偏置或混合偏置 方式)即要保证合适的直流偏置; (2):输入信号能输送至放大器件的输入端; (3):有信号电压输出。
判断放大电路是否具有放大作用,就是根据这几点,它们必须同时具备。
2.1.4晶体管放大电路的直流工作状态分析(以晶体管电路为例)直流通路:在没有信号输入时,估算晶体管的各极直流电流和极间直流电压,将放大电路中的电容视为开路,电感视为短路即得。