最新法向量求二面角
- 格式:ppt
- 大小:388.00 KB
- 文档页数:19
向量法求二面角大小洋葱数学【原创实用版】目录一、引言二、向量法求二面角大小的基本原理1.求出所求二面角两个面上的法向量2.计算 cos(法向量 1 法向量 2)/(法向量 1 的模长法向量 2 的模长)3.根据图形判断是锐二面角还是钝二面角4.确定 cos 的符号5.用反三角函数表示这个角三、结论正文一、引言在数学中,二面角是指两个平面之间的夹角,它是一个非常重要的概念。
在实际应用中,求解二面角大小有着广泛的应用,而向量法是求解二面角大小的一种常用方法。
本文将从向量法的角度出发,详细介绍如何求解二面角大小。
二、向量法求二面角大小的基本原理1.求出所求二面角两个面上的法向量在求解二面角大小时,首先需要找到两个平面上的法向量。
法向量是垂直于平面的向量,它可以通过计算平面上两个向量的叉积得到。
假设平面 1 的法向量为 A,平面 2 的法向量为 B,则可以通过计算向量 A 和向量 B 的叉积得到法向量 C。
2.计算 cos(法向量 1 法向量 2)/(法向量 1 的模长法向量 2 的模长)接下来,需要计算二面角大小所对应的 cos 值。
根据向量内积的定义,可以得到 cos(法向量 1 法向量 2)=(法向量 1·法向量 2)/(法向量 1 的模长*法向量 2 的模长)。
其中,法向量 1·法向量 2 表示法向量 1 和法向量 2 的内积,法向量 1 的模长和法向量 2 的模长分别表示它们的模长。
3.根据图形判断是锐二面角还是钝二面角在计算出 cos 值后,需要根据图形来判断这个二面角是锐二面角还是钝二面角。
如果 cos 值为正,那么这个二面角就是锐二面角;如果 cos 值为负,那么这个二面角就是钝二面角。
4.确定 cos 的符号在计算 cos 值时,需要注意 cos 值的符号。
如果法向量 1 和法向量 2 的内积为正,那么 cos 值为正;如果内积为负,那么 cos 值为负。
在实际计算中,需要根据具体情况来确定 cos 值的符号。
求二面角的六种方法一、引言二面角是几何学中的一个重要概念,它用于描述两个平面的夹角。
求解二面角的方法有多种,本文将介绍六种常用的方法,包括向量法、三角函数法、三边长法、内外法、旋转法和平行四边形法。
对于每种方法,我们将详细介绍其原理和具体步骤,并给出相关的实例来加深理解。
二、向量法向量法是最常用的求解二面角的方法之一,其基本原理是通过两个平面的法向量来计算二面角。
具体步骤如下:2.1 确定两个平面首先,我们需要确定需要求解的两个平面。
平面可以由三个不共线的点或者法向量和过点的方程来确定。
2.2 求解法向量找到两个平面的法向量,分别记作n1⃗⃗⃗⃗ 和n2⃗⃗⃗⃗ 。
2.3 计算二面角的余弦值通过法向量n1⃗⃗⃗⃗ 和n2⃗⃗⃗⃗ 的点积计算二面角的余弦值:cosθ=n1⃗⃗⃗⃗ ⋅n2⃗⃗⃗⃗ ∥n1⃗⃗⃗⃗ ∥∥n2⃗⃗⃗⃗ ∥2.4 计算二面角通过余弦值反函数(如反余弦函数)计算二面角的值:θ=arccos(cosθ)三、三角函数法三角函数法是另一种常用的求解二面角的方法,主要基于三角函数的关系来计算二面角。
具体步骤如下:3.1 确定两个平面同样,我们首先需要确定需要求解的两个平面。
3.2 求解法向量和对应边长求解两个平面的法向量n 1⃗⃗⃗⃗ 和n 2⃗⃗⃗⃗ ,以及两个平面上的边长。
3.3 计算三角函数的值根据边长和法向量的乘积,分别计算sinα=∥n 1⃗⃗⃗⃗⃗ ×n 2⃗⃗⃗⃗⃗ ∥∥n 1⃗⃗⃗⃗⃗ ∥∥n 2⃗⃗⃗⃗⃗ ∥和cosα=n1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ ∥n 1⃗⃗⃗⃗⃗ ∥∥n 2⃗⃗⃗⃗⃗ ∥,其中α为两个边向量构成的夹角。
3.4 计算二面角通过三角函数的反函数(如反正弦函数、反余弦函数)计算夹角α的值,即得到二面角的值。
四、三边长法三边长法是一种适用于三角形的方法,其原理是利用给定的三边长计算三角形的角度,进而求得二面角。
具体步骤如下:4.1 确定三个边长根据具体情况,确定三个边长a 、b 和c 。
法向量求二面角公式在几何学中,二面角是一种重要的概念,它由两条相交的平面构成。
此外,当两条相交的直线所在的平面具有相同的法向量时,它们构成的夹角叫做二面角。
而要求出两个法向量构成的二面角,可以采用“法向量求二面角公式”。
“法向量求二面角公式”可以用下面的公式表示:α = arccos (N1 . N2 / (|N1| |N2|))其中,N1、N2分别是两个法向量,“.”表示内积,“|N1| |N2|”表示两个法向量的向量积,α表示由N1、N2两个法向量构成的夹角。
要用“法向量求二面角公式”求出N1、N2两个法向量的夹角,第一步是求出N1、N2的值。
N1、N2的值可以用下面的公式求得: N1 = (x1, y1, z1)N2 = (x2, y2, z2)其中,(x1, y1, z1)和(x2, y2, z2)分别表示两个法向量在三个坐标方向上的值,x1、y1、z1是N1在三个坐标方向上的值,x2、y2、z2是N2在三个坐标方向上的值。
第二步,根据求得的N1、N2值,就可以用“法向量求二面角公式”求出N1、N2所构成的夹角,具体公式如上所述。
以上就是“法向量求二面角公式”的介绍,它可以帮助我们快速确定两个法向量构成的夹角。
这种公式的优点在于它可以简单快速地求得椭圆夹角、圆柱夹角、椎体夹角等复杂夹角,为几何学研究带来了方便。
当然,如果希望用“法向量求二面角公式”求出精确的夹角,需要准确求出N1、N2的值,还需要采用精度更高的计算机程序。
另外,在计算N1、N2的值时,也要注意两个法向量的向量积及其长度是否相等,不然就会得到错误的结果。
本文介绍了“法向量求二面角公式”,它可以用于求出相交的两个法向量构成的夹角,使几何学研究变得更加容易简单。
然而,为了保证计算出来的结果准确无误,求值时需要考虑到N1和N2之间的向量积及长度等因素。
二面角法向量公式
1. 什么是二面角
在空间几何中,二面角是指两个平面之间的夹角,其中一个平面的法向量沿着另一个平面的法向量的方向。
2. 什么是二面角法向量
在计算机图形学和空间几何中,二面角法向量是用来表示二面角的法向量的矢量。
3. 二面角法向量公式
设$N_1$为平面1的法向量,$N_2$为平面2的法向量,则二面角的法向量可以表示为:
$$N=N_1\times N_2$$
其中"$\times$"表示向量叉积运算。
这个公式基于两个向量的叉乘的属性:结果向量的大小等于两个向量构成的平行四边形的面积,方向垂直于该平行四边形。
4. 二面角法向量的应用
二面角法向量主要用于计算坐标系之间的变换,如三维模型的旋转和平移。
在计算机图形学中,二面角法向量还常用于光线跟踪算法中的光线投射和表面反射计算。
5. 总结
二面角法向量公式是计算机图形学和空间几何中的重要工具。
使用该公式可以快速、准确地计算二面角的法向量。
二面角法向量的应用非常广泛,在很多领域都能看到其身影,为我们带来了很多便利。
高考数学专题:向量求二面角向量法求二面角大小的两种方法(1)分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.1、如图,四棱锥P-ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=π3,M为BC上一点,且BM=12,MP⊥AP.(1)求PO的长;(2)求二面角A-PM-C的正弦值.2、如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F 分别为AC,DC的中点.(1)求证:EF⊥BC;(2)求二面角E-BF-C的正弦值.3、如图所示,在多面体ABCD-A1B1C1D1中,上、下两个底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB=2A1B1=2DD1=2a.(1)求异面直线AB1与DD1所成角的余弦值;(2)已知F是AD的中点,求证:FB1⊥平面BCC1B1;(3)在(2)的条件下,求二面角F-CC1-B的余弦值.4、如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E与二面角C-BE-F都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.5、如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O-EF-C的正弦值;(3)设H为线段AF上的点,且AH=23HF,求直线BH和平面CEF所成角的正弦值6、如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=π2,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.7、如图所示,在多面体A1B1D1-DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EF∥B1C;(2)求二面角E-A1D-B1的余弦值.8、如图,三棱锥P-ABC中,PC⊥平面ABC,PC=3,∠ACB=π2,D,E分别为线段AB,BC上的点,且CD=DE=2,CE=2EB=2.(1)证明:DE⊥平面PCD;(2)求二面角A-PD-C的余弦值.答案:1、解:(1)如图,连接AC,BD,因为ABCD为菱形,则AC∩BD=O,且AC⊥BD.以O为坐标原点,OA →,OB →,OP →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz .因为∠BAD =π3,所以OA =AB ·cos π6=3,OB =AB ·sin π6=1,所以O (0,0,0),A (3,0,0),B (0,1,0),C (-3,0,0),OB →=(0,1,0),BC →=(-3,-1,0).由BM =12,BC =2知, BM→=14BC →=⎝ ⎛⎭⎪⎫-34,-14,0, 从而OM→=OB →+BM →=⎝ ⎛⎭⎪⎫-34,34,0, 即M ⎝ ⎛⎭⎪⎫-34,34,0.设P (0,0,a ),a >0,则AP→=(-3,0,a ),MP →=⎝ ⎛⎭⎪⎫34,-34,a . 因为MP ⊥AP ,故MP →·AP→=0,即-34+a 2=0,所以a =32或a =-32(舍去), 即PO =32.(2)由(1)知,AP →=⎝ ⎛⎭⎪⎫-3,0,32,MP →=⎝ ⎛⎭⎪⎫34,-34,32,CP →=⎝ ⎛⎭⎪⎫3,0,32. 设平面APM 的法向量为n 1=(x 1,y 1,z 1),平面PMC 的法向量为n 2=(x 2,y 2,z 2),由n 1·AP →=0,n 1·MP →=0, 得⎩⎪⎨⎪⎧-3x 1+32z 1=0,34x 1-34y 1+32z 1=0,故可取n 1=⎝ ⎛⎭⎪⎫1,533,2. 由n 2·MP →=0,n 2·CP →=0, 得⎩⎪⎨⎪⎧34x 2-34y 2+32z 2=0,3x 2+32z 2=0,故可取n 2=(1,-3,-2). 从而法向量n 1,n 2的夹角的余弦值为 cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-155, sin 〈n 1,n 2〉=1-⎝⎛⎭⎪⎫-1552=105, 故所求二面角A -PM -C 的正弦值为105.2、(1)证明:由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示空间直角坐标系.易得B (0,0,0),A (0,-1,3),D (3,-1,0),C (0,2,0),因而E ⎝ ⎛⎭⎪⎫0,12,32,F ⎝ ⎛⎭⎪⎫32,12,0,所以EF →=⎝ ⎛⎭⎪⎫32,0,-32,BC →=(0,2,0),因此EF →·BC→=0. 从而EF →⊥BC →,所以EF ⊥BC .(2)平面BFC 的一个法向量为n 1=(0,0,1). 设平面BEF 的法向量为n 2=(x ,y ,z ). 又BF →=⎝ ⎛⎭⎪⎫32,12,0,BE →=⎝ ⎛⎭⎪⎫0,12,32,由⎩⎪⎨⎪⎧n 2·BF →=0,n 2·BE →=0得其中一个n 2=(1,-3,1).设二面角E -BF -C 大小为θ,且由题意知θ为锐角, 则cos θ=|cos 〈n 1,n 2〉| =⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=15. 因此sin θ=25=255,即所求二面角的正弦值为255.3、.解:以D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则A (2a ,0,0),B (2a ,2a ,0),C (0,2a ,0),D 1(0,0,a ),F (a ,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)因为AB 1→=(-a ,a ,a ),DD 1→=(0,0,a ), 所以|cos 〈AB 1→,DD 1→〉|=⎪⎪⎪⎪⎪⎪⎪⎪AB 1→·DD 1→|AB 1→||DD 1→|=33,所以异面直线AB 1与DD 1所成角的余弦值为33. (2)证明:因为BB 1→=(-a ,-a ,a ),BC →=(-2a ,0,0),FB 1→=(0,a ,a ), 所以⎩⎪⎨⎪⎧FB 1→·BB 1→=0,FB 1→·BC →=0,所以FB 1⊥BB 1,FB 1⊥BC . 因为BB 1∩BC =B , 所以FB 1⊥平面BCC 1B 1.(3)由(2)知,FB 1→为平面BCC 1B 1的一个法向量. 设n =(x 1,y 1,z 1)为平面FCC 1的法向量, 因为CC 1→=(0,-a ,a ),FC →=(-a ,2a ,0), 所以⎩⎪⎨⎪⎧n ·CC 1→=0,n ·FC →=0,即⎩⎨⎧-ay 1+az 1=0,-ax 1+2ay 1=0.令y 1=1,则n =(2,1,1),所以||cos 〈FB 1→,n 〉=⎪⎪⎪⎪⎪⎪⎪⎪FB 1→·n |FB 1→||n |=33,因为二面角F -CC 1-B 为锐角, 所以二面角F -CC 1-B 的余弦值为33.4、解:(1)证明:由已知可得AF ⊥DF ,AF ⊥FE ,所以AF ⊥平面EFDC .又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC . (2)如图,过D 作DG ⊥EF ,垂足为G , 由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G -xyz . 由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°, 则|DF |=2,|DG |=3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3). 由已知,AB ∥EF , 所以AB ∥平面EFDC .又平面ABCD ∩平面EFDC =CD , 故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°,从而可得C (-2,0,3).所以EC→=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0).设n =(x ,y ,z )是平面BCE 的法向量,则 ⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎨⎧x +3z =0,4y =0. 所以可取n =(3,0,-3). 设m 是平面ABCD 的法向量, 则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4), 则cos 〈n ,m 〉=n·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.5、解:依题意,OF ⊥平面ABCD ,如图,以O 为原点,分别以AD →,BA →,OF →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,依题意可得O (0,0,0),A (-1,1,0),B (-1,-1,0),C (1,-1,0),D (1,1,0),E (-1,-1,2),F (0,0,2),G (-1,0,0).(1)证明:依题意,AD→=(2,0,0),AF →=(1,-1,2). 设n 1=(x ,y ,z )为平面ADF 的法向量,则⎩⎪⎨⎪⎧n 1·AD →=0,n 1·AF →=0,即⎩⎨⎧2x =0,x -y +2z =0.不妨设z =1,可得n 1=(0,2,1).又EG →=(0,1,-2),所以EG →·n 1=0, 又因为直线EG ⊄平面ADF , 所以EG ∥平面ADF .(2)易证,OA→=(-1,1,0)为平面OEF 的一个法向量. 依题意,EF→=(1,1,0),CF →=(-1,1,2).设n 2=(x ,y ,z )为平面CEF 的法向量,则⎩⎪⎨⎪⎧n 2·EF →=0,n 2·CF →=0,即⎩⎨⎧x +y =0,-x +y +2z =0.不妨设x =1,可得n 2=(1,-1,1).因此cos 〈OA →,n 2〉=OA →·n 2|OA →||n 2|=-63,于是sin 〈OA →,n 2〉=33.所以,二面角O -EF -C 的正弦值为33.(3)由AH =23HF ,得AH =25AF .因为AF→=(1,-1,2),所以AH →=25AF →=⎝ ⎛⎭⎪⎫25,-25,45,进而有H ⎝ ⎛⎭⎪⎫-35,35,45,从而BH →=⎝ ⎛⎭⎪⎫25,85,45,因此cos 〈BH →,n 2〉=BH →·n 2|BH →||n 2|=-721.所以,直线BH 和平面CEF 所成角的正弦值为721.6、解:以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系A -xyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2). (1)因为AD ⊥平面PAB ,所以AD→是平面PAB 的一个法向量,AD →=(0,2,0).因为PC→=(1,1,-2),PD →=(0,2,-2). 设平面PCD 的法向量为m =(x ,y ,z ), 则m ·PC →=0,m ·PD →=0, 即⎩⎨⎧x +y -2z =0,2y -2z =0. 令y =1,解得z =1,x =1.所以m =(1,1,1)是平面PCD 的一个法向量. 从而cos 〈AD →,m 〉=AD →·m |AD →||m |=33, 所以平面PAB 与平面PCD 所成二面角的余弦值为33. (2)因为BP→=(-1,0,2),设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1),又CB→=(0,-1,0),则CQ →=CB →+BQ →= (-λ,-1,2λ),又DP→=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2.设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝ ⎛⎭⎪⎫1t -592+209≤910.当且仅当t =95,即λ=25时, |cos 〈CQ→,DP →〉|的最大值为31010. 因为y =cos x 在⎝ ⎛⎭⎪⎫0,π2上是减函数,所以此时直线CQ 与DP 所成角取得最小值. 又因为BP =12+22=5, 所以BQ =25BP =255.7、解:(1)证明:由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D .又A 1D ⊂平面A 1DE ,B 1C ⊄平面A 1DE ,于是B 1C ∥平面A 1DE . 又B 1C ⊂平面B 1CD 1,平面A 1DE ∩平面B 1CD 1=EF ,所以EF ∥B 1C .(2)因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD ,以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为(0.5,0.5,1).设面A 1DE 的法向量为n 1=(r 1,s 1,t 1),而该面上向量A 1E →=(0.5,0.5,0),A 1D →=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →得r 1,s 1,t 1应满足方程组⎩⎨⎧0.5r 1+0.5s 1=0,s 1-t 1=0,因为(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设面A 1B 1CD 的法向量为n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1),所以结合图形知二面角E -A 1D -B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63. 8、解:(1)证明:由PC ⊥平面ABC ,DE ⊂平面ABC ,得PC ⊥DE .由CE =2,CD =DE =2得△CDE 为等腰直角三角形,故CD ⊥DE .又PC ∩CD =C ,所以DE ⊥平面PCD .(2)由(1)知,△CDE 为等腰直角三角形,∠DCE =π4.如图,过D 作DF 垂直CE 于F ,易知DF =FC =FE =1.又EB =1,故FB =2.由∠ACB =π2得DF ∥AC ,DF AC =FB BC =23,故AC =32DF =32.如图,以C 为坐标原点,分别以CA→,CB →,CP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则C (0,0,0),P (0,0,3),A ⎝ ⎛⎭⎪⎫32,0,0,E (0,2,0),D (1,1,0),ED →=(1,-1,0),DP →=(-1,-1,3),DA →=⎝ ⎛⎭⎪⎫12,-1,0. 设平面PAD 的法向量为n 1=(x 1,y 1,z 1),由n 1·DP →=0,n 1·DA →=0,得⎩⎪⎨⎪⎧-x 1-y 1+3z 1=0,12x 1-y 1=0, 故可取n 1=(2,1,1).由(1)可知,DE ⊥平面PCD ,故平面PCD 的法向量n 2可取为ED→, 即n 2=(1,-1,0).从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=36, 故二面角A -PD -C 的余弦值为36.。
应用法向量求二面角应用向量求二面角的基本思路是: 将求二面角问题转化为求两个向量的夹角问题,进而利用向量的数量积来求.基本方法有: 1.把求二面角问题转化为求两个半平面的法向量夹角问题;2.把求二面角问题转化为求分别位于两个半平面内且与棱垂直的两个向量的夹角问题.方法1需建立空间直角坐标系,计算出法向量坐标,有一定的运算量,且算出法向量的夹角后还需结合图形判断该夹角和所求二面角是相等还是互补,比较麻烦. 如图4(1),需判断法向量12,n n 的夹角与AB αβ--的大小是相等?还是互补?方法2可以理解为:在棱上取两点,过这两点分别在两个半平面内作与棱垂直的射线,则这两条射线所成角的大小即为二面角大小,即将问题转化为异面射线所成角的问题,从而转化为向量的夹角问题,如图4(2),,m AB CD αβ--<>的大小等于.在利用向量的数量积求夹角的过程中,可以考虑坐标运算,也可以考虑数量积的普通运算.图4(1)n 2n 1BAβαm图4(2)CBADβα例.如图5,在直平行六面体ABCD-A 1B 1C 1D 1中,底面ABCD 是边长为2a 的菱形,且∠BAD=60°,E 为AB 的中点,二面角A 1-DE-A 的大小为60°,求二面角A 1-DE-C 1的大小.1C图5图5(1)1C图5(2)1C解: 在菱形ABCD 中,∵∠BAD=60°,E 为AB 的中点∴DE ⊥AB,又面AC ⊥面A 1B ,面AC 面A 1B=AB 且DE ⊂面AC ∴DE ⊥面A 1B,∴∠A 1EA 为二面角A 1-DE-A 的平面角,故∠A 1EA=60°∴AA 1下面简要分析求二面角A 1-DE-C 1的思路.思路一: 找棱DE 的垂面.如图5(1),可证DE ⊥面A 1B,即面A 1B 为DE 的垂面,但该垂面与面DEC 1的交线不明显,可取BB 1的中点F,连结EF ,FC 1,则面EDC 1即为面FEDC 1,故该垂面与面DEC 1的交线为EF ,与面A 1DE 的交线为A 1E, ∠A 1EF 为二面角A 1-DE-C 1的平面角,余解略.思路二: 如图5(2),设二面角A 1-DE-C 1的大小为θ,可证11,DE A E DE DC ⊥⊥,故11,EA DC <>=θ,即把问题转化为求两向量的夹角.()()22211111111112221111111||||||||||2,A C A E ED DC A C A E ED DC A E ED DC A E ED DC A E ED ED DC DC A E A E ED ED DC =++∴=++=++=+++⋅+⋅+⋅⊥⊥1111111222211111100||||cos()||||||||2||||cos()A E ED ED DC DC A E DC A E A C A E ED DC DC A E πθπθ∴⋅=⋅=⋅=⋅⋅-∴=+++⋅⋅-且又只需求出线段1111,,,A C ED DC A E 的长度,即可求出θ,余解略.思路三: 建立合适的空间直角坐标系.如图5(3) 建立空间直角坐标系A-xyz,或5(4) 建立空间直角坐标系E-xyz ,以图5(3)为例.设二面角A 1-DE-C 1的大小为θ,则11,EA DC <>=θ()()())()1111211111111,0,0,0,,,,0,0,2,0,,3223,,3,3,22||2,||7,7cos 14||||a A A E a D a C a aEA a a DC a a EA a DC a EA DC a EA DC A E DC θ⎛⎫⎪ ⎪⎝⎭⎛⎫∴=--= ⎪ ⎪⎝⎭∴==⋅=⋅∴==⋅如图∴二面角A 1-DE-C 1的大小为. 思路四: 利用法向量求二面角的大小.如图5(3) 建立空间直角坐标系A-xyz,或5(4) 建立空间直角坐标系E-xyz ,仍以图5(3)为例.1C1A C()()())1110,0,0,,,,0,0,2,0,,32333,,3,,,022a A A E D a C a a A E a a ED a ⎫⎪⎪⎝⎭⎛⎫⎛⎫∴=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭设面AE 1D 的法向量为()111,,m x y z =,面EDC 1的法向量为()222,,nx y z=则(1)100m A E mDE ⎧⋅=⎪⎨⋅=⎪⎩,且(2)100n DC n ED ⎧⋅=⎪⎨⋅=⎪⎩;即11122211220030y y y x +-=++=-==⎪⎩且令y 1=1,得003,1,,m m ⎛= 为面AE 1D 的一个法向量;令y 2=1,得003,1,,n n ⎛= 为面EDC 1的一个法向量.∴00,m n <>与二面角A 1-DE-C 1相等或互补计算过程略.但需根据图形确定二面角是锐角还是钝角.综上,用向量法求二面角时,可优先考虑将其转化为“求分别位于两个半平面内且与棱垂直的两个向量的夹角问题”,若有难度,可考虑建立空间直角坐标系,利用法向量来求二面角的大小.。